SABRE

(Sodium iodide with Active Background REjection) A New NaI(Tl) Experiment for Dark Matter

Frank Calaprice Department of Physics Princeton University

The DAMA/LIBRA Modulation

2014

Motivation for a NaI(Tl) Experiment

DAMA/LIBRA observes an annual modulation in count rate on NaI(Tl) target consistent with a WIMP dark matter signal.

- The modulation has very high (~9 s) statistical significance.
- The array consists of 250-kg of unique low-background NaI(Tl) scintillating crystals.
- No explanation yet of the modulation due to normal-matter effects.
- Results favor light WIMPS, but are seemingly inconsistent with experiments using other targets. (LUX, XENON, CDMS...)
- Other hints of light WIMPS come from CoGeNT, CDMS-Si, and CRESST.
- Confirmation or refutation of DAMA-LIBRA by another NaI(Tl) experiment is lacking.

SABRE addresses the need for an independent NaI(Tl) experiment.

Background Suppression

- The DAMA-LIBRA (D-L) collaboration achieved a significant result in developing a NaI(Tl) detector with low background and large mass.
 - A good measure of their achievement is that no group has been successful in matching their background with NaI(Tl).
- SABRE will attempt to suppress background well below the level achieved by DL to enhance signal/noise ratio of a possible WIMP signal.
 - Lower background allows a small detector mass to be as effective as a large mass with higher background.
 - The first phase of SABRE is to demonstrate the feasibility of low background NaI(Tl) modules.

Summary of SABRE

SABRE is designed to test the DAMA/LIBRA dark matter claim.

- New radio-pure NaI(Tl) crystals
 - Higher purity NaI powder than ever achieved
 - Further purification during crystallization
 - Background control in processing and handling.
- Low background PMT
 - Higher light yield without light guide.
 - Less noise with lower operating voltage (LNGS pre-amp)
- Low radioactivity detector enclosure
 - Electroformed copper from PNNL [U] [Th] $<\mu Bq/kg$ U, Th
- Large liquid scintillator veto to reject residual background Reject internal 3 keV background due to ⁴⁰K decay. Suppress external cosmic ray and environmental gamma background.

4/15/2014

LNGS Scientifi Committee Meeting April 15

SABRE Veto Detector for 50-60 kg NaI(Tl)

- Sufficient NaI(Tl) mass
 - Bkgnd < 0.4 cpd/kg/keV</p>
- Cylinder: 1.5 m x 1.5 m
- LAB scintillator: 2 tons
- PMTs: Ten 8-inch Ham.
- Reflector: Lumirror
- L.Y.: 0.22 p.e./keV
- Shielding: 25cm steel.
 - Small footprint.
- Portable: LNGS, SNOLab, Australia?
- Funded by NSF.
 - In construction.

DarkSide Liquid Scintillator Neutron Veto

Darkside L.S. Veto is Operating.

- 4 m diameter sphere
- ~ 30 tons of PC + TMB
- 110 high QE PMTs
- Light-yield ~0.52 p.e./keV with same Lumirror reflector used for SABRE.
- Shielded by >3-4 m of water
- NaI(Tl) 1-kg detector radiopurity tests start Summer 2014.
- Use of 3 ports for 70-kg SABRE to be decided by schedules of SABRE and large Darkside G2 detector.

DarkSide Liquid Scintillator Neutron Veto Initially to test NaI(Tl) radiactivity: Later for 70-kg SABRE?

NaI(Tl) Detector Module

- Hamamatsu R11065-series Low Radioactivity PMT
 - ~30-35% Q.E.
 - \sim 1 mBq U and Th (lower chain activity)
 - ~1 mBq Co, ~10 mBq K
- New 4-inch Hamamatsu PMT available soon.
 - Lower background with synthetic ceramic feedthrough plate.
- Negligible background due to low radioactivity & veto.
 - High light collection efficiency without light guide used in DL.
- LNGS pre-amp (A. Razeto) to reduce PMT dark rate.
 - Feasibility of lower threshold energy in test phase. (< 1 keV).
- PNNL electroformed copper for enclosure
 - U, Th radioactivity: $\sim \mu Bq/kg$
 - Same as used in the Majorana $0\nu\beta\beta$ decay experiment

Development of Radio-pure NaI Powder

- Research started 4 years ago in Princeton by Benziger, Calaprice,Wright in collaboration with commercial companies:
 <u>SAFC</u>, Urbana (Later purchased by Sigma-Aldrich)
 - Seastar-MV Laboratories
- Successful research focused on chemical reactions to produce NaI.

 $Na_2CO_3(aq) + 2HI(aq) \rightarrow 2NaI(aq) + H_2O + CO_2(g)$

- Development aided by new measurement capabilities:
 - Measurement of [K] to ~ 10 ppb:
 - Developed by Seastar (calibrated by g counting) and Sigma Aldrich.
 - Measurement of [U] [Th] to < 1 ppt
 - Developed by E. Hoppe at PNNL

Radio-pure NaI Powder for Crystals

	MV Laboratories (Seastar)	Sigma Aldrich "Astro-Grade"	DAMA Powder (<i>Level in Crystal</i>)
K	12 ppb	3.5 ppb / 18 ppb+	<100 ppb ~13 ppb in crystal
Rb	14 ppb	0.2 ppb	Upper limit: 0.35 ppb crystal
Th	<200 ppt ~3.5ppt*	<1700 ppt <1ppt*	~20 ppt (0.5-7.5 ppt in crystal)
U	<100 ppt <1ppt*	<500 ppt <1ppt*	~20 ppt (0.7 -10 ppt in crystal)

+ 3.5 ppb from Sigma Aldrich specs, 18 ppb measured by Seastar ICP-MS
* Preliminary measurement at PNNL by ICPMS isotope dilution method.

NaI(Tl) Crystal Growth

Collaboration with RMD (Boston, MA). Techniques to further purify NaI powder

- Zone refining of standard purity NaI effective.
- Purification of crystal growing process effective.

Vertical Bridgman method studied in 2013

- High light-yield observed (>10 p.e./keV)
- 40 K reduced by ~4 in standard purity NaI test
- PNNL measured reduction reduction of in high purity test

Kyropoulos method studies 2013-2014

- Higher purity, larger NaI(Tl) crystals
- Platinum/Suprasil 310 crucible

Large Low-background PMT R&D Hamamatsu 4" Version of 3" R110065 Metal Bulb Series

Light yield of large NaI crystals to be used in SABRE will increase with larger PMTs matched to crystals.

A 4" version of the low background R11065 PMT is well matched to crystals and is in development.

Reducing PMT Radioactivity Synthetic Alumina Ceramic Feedthrough

Main background in R11065-20 is due to ceramic pin feed-through plate. Radio-pure synthetic ceramic has been developed by Princeton and OxiMaTec for PMT feedthroughs.

Hamamatsu pin-ceramic plate

Radio-pure synthetic ceramic plate

SABRE Background Simulation Based on radio-purity of NaI powder

* This spectrum is based on measured radioactivity in NaI powder.

* External background is estimated to be relatively small compared to internal.

LNGS Scientifi Committee Meeting April 15

Speculative SABRE Background Based on reduction of U, Th, K, Rb by x4 during crystal growth.

Reduction of [K] by x4 was observed in test of standard NaI.

LNGS Scientifi Committee Meeting April 15

Running Time Needed to Test DAMA

- Running time is strongly dependent on background achieved.
- With "conservative" background of 0.4 cpd/kg/keV (twice that measured in powder by company and PNNL), a 3-year run with 50-kg NaI(Tl) array will give high confidence result confirming or refuting DL.
 - If DL effect is not WIMPs, there is only 1.5% chance SABRE will agree with it.
 - If DL effect is really WIMPS, there is < 1% chance SABRE will obtain null effect.
- With lower background, the time is shorter or significance is higher.
- DL modulation is ~0.018 cpd/kg/keV in 2-4 keV energy window.
- <u>With standard WIMP halo</u>, a 10 GeV WIMP has most of its nuclear recoil energy spectrum below the 2 keV DL threshold.
 - Observed modulation implies following non-modulating rates for 10 GeV WIMP:
 - Whole nuclear recoil spectrum: 1.13 cpd/keV/kg
 - ROI (2-4 keV): 0.13 cpd/keV/kg.
 - The modulation and total WIMP in ROI imply a 14% modulation for 10 GeV WIMP.
 - The modulation is diluted by background.
 - The SABRE 50-kg array with expected low backgroun should detect big modulation.

Current Status and Estimated Schedule

- Current goal is to demonstrate high radio-purity, high light-yield 3-inch crystal modules.
 - Under construction with NSF funding.
 - Shielded in Darkside liquid scintillator veto.
 - Hamamatsu 3" R11065-X PMTs.
 - Electroformed copper encapsulation.
 - Schedule: Expect to start taking data summer 2014.
- Next goal, not yet funded, will be an array of 8-kg NaI(Tl) modules (50-60 kg) using new 4" PMTs.
 - Start construction in 2015 and 2 years to complete.
 - Taking data as modules are constructed is an option.

SABRE Collaboration (growing)

Princeton University:

F. Calaprice, C. Galbiati, J. Benziger, F. Froborg, M. Wada, J. Xu,

E. Shields, S. Westerdale, A. Nelson

University of Houston:

E. Hungerford, S. Davini, G. Korga LNGS:

A. Razeto, Aldo Ianni

Milano University:

D. D'Angelo

PNNL:

```
E. Hoppe, J. Orrell, C. Overman
```

Summary

- SABRE is developing low-background NaI(Tl) detector modules for independent check of the DAMA-LIBRA modulation.
- Good progress has been achieved on:
 - Production of high purity NaI powder.
 - Reduction of radioactivity by crystal growth by zone refining & crystal growth.
 - Development of low-background PMTs.
 - Development of low-background detector encapsulation.
 - Active shielding with liquid scintillator.
- Production of NaI crystals is underway to confirm background in NaI(Tl) modules by direct counting.
 - Background tests planned this summer in Darkside liquid scintillator veto.
- The 50-kg SABRE with low background should produce definitive results.

Other NaI Experiments

- DM ICE (Antarctic)
- KIMS (Korea)
- ANAIS (Spain)
- Kamland NaI (Japan)

Thank You!