DarkSide @ LNGS: an update

Aldo Ianni for the DarkSide Collaboration

XLI Gran Sasso Scientific Committee April 15th, 2014

DarkSide background rejection strategy

Screening and selection of detector materials
 Identify and reject cosmogenic muons
 Water Cherenkov Detector

Identify and reject radiogenic neutrons from the active mass
 ✓ Active veto based on a boron-loaded liquid scintillator detector

◆ Two-phase LAr **TPC**

- ✓ Pulse Shape Discrimination
- ✓ S2/S1
- ✓ 3D Fiducial Volume definition to reject surface background
- ✓ Underground argon with reduced (> 150) cosmogenic ³⁹Ar

DarkSide program @ LNGS

Scalable technology for a two-phase TPC in LAr

- ✓ **DarkSide-10** (DS-10)
 - 10 kg active mass
 - Operated in 2012 @ LNGS
 - Technical prototype for larger TPC
- ✓ DarkSide-50 (DS-50)
 - 50 kg active mass
 - Built inside CTF Water Tank with active neutron veto
 - Launch technology for next generation detectors
 - In operation since Nov 2013
 - Expected WIMP sensitivity 10⁻⁴⁵ cm² with UAr

✓ DarkSide-G2

- 3600 kg fiducial
- Can be built inside present DS-50 neutron veto
- Expected sensitivity 10⁻⁴⁷ cm²

DS-50 @ LNGS

Rn-free clean room (10-15 mBq/m³ in 110 m³) Used for assembling TPC and deployment

Water Cherenkov muon veto: $10^3 \text{ m}^3 \text{ H}_2\text{O}$ with 76/80 8" PMTs

Boron-loaded liquid scintillator

(50% TMB + 50% PC) as neutron veto with 108/110 8" PMTs

150kg LAr TPC with 2 x 19 3" PMTs AAr at present with 1Bq/kg ³⁹Ar UAr with < 6.5 mBg/kg ³⁹Ar

TPC hanging in LSV

.

PMTs + Cold-Amps in LAr

R11065 PMTs

PMT Gain = 3×10^5

PMT HV ~ 1200 V

Noise 3 mV on 200 MHz

Slow Control System

- • •

📴 Shifter.vi

Slow Control System

S1 and S2 signals

Trigger: 3PMTs && < 380p.e.

Livetime

Pulse Shape Discrimination in LAr

$$f(t) = \left(\frac{q}{\tau_F}e^{-t/\tau_F} + \frac{1-q}{\tau_S}e^{-t/\tau_S}\right)$$

$$\tau_F = 7ns$$

$$\tau_S = 1600ns$$

$$q = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$F_{90} = \frac{\int_0^{90ns} dt f(t)}{\int_0^\infty dt f(t)} = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

$$f(t) = \begin{cases} 0.3 \text{ ER} \\ 0.7 \text{ NR} \end{cases}$$

Pulse Shape F₉₀

DS-50 sensitivity with 280 kg x day

DS-50 expected sensitivity with UAr

Neutron veto

 \bigcirc 30 tons of boron-loaded liquid scintillator \bigcirc 50% TMB [B(OCH₃)₃] + 50% PC + 3 g/l PPO

 ${}^{10}B(19.9\%) + n \xrightarrow{\rightarrow} {}^{7}Li(g.s.) + \alpha, 6.4\%$ $\xrightarrow{\rightarrow} {}^{7}Li^{*} + \alpha, {}^{7}Li^{*} \rightarrow {}^{7}Li + \gamma(478\text{keV}), 93.7\%$

- Real High reflectivity of inner surface of containment vessel
- n-veto expected performance: < 1 event in 3 years after n-veto rejection and TPC cuts

Neutron veto at present

Determined a high ¹⁴C contamination from TMB
 ~10⁻¹³ ¹⁴C/¹²C

- ca understood origin of contamination
- ca clear roadmap to fix the issue

A High Light Yield measured from ¹⁴C spectrum, ⁶⁰Co contamination in steel of cryostat (~ 13 mBq/kg) and from ²⁰⁸TI

TPC

- Expected 1-2 neutron/month (mainly from measured activity of PMTs) w/o veto cut with R11065 PMTs. Veto rejection factor = 100: need a n-veto
- - Gain stability 1-2%
 - HV: E_{drift} = 200 V/cm, E_{extraction} = 2.8 kV/cm
 - Light yield ~ 8 p.e./keVee
 - Electron lifetime ~5ms
 - To compare with max drift time of ~ 400 ms
 - ^{83m}Kr internal calibration (two times) 41.5 keVee sum line

Light yield @ null field

Light Yield @ 200V/cm

e⁻ life time

Summary of 1st DS-50 data

- In operation with AAr since Oct 2013
 ■
- Real TPC (AAr), neutron veto and muon veto commissioned
 - ন্থ Analyzed 280 kg x day
 - S2/S1 and x-y cut still under development
 - c neutron veto light yield ~ 0.5 p.e./keVee
 - c neutron veto scintillator acquired with TPC trigger
 - c neutron veto scintillator with high ¹⁴C contamination
- No background in PSD in upper 50% NR acceptance region in 3x10⁷ events
- Rn contamination from Bi-Po < 0.85 mBq/kg_Ar
- Already collected data for 2615 kg x day (50kg LAr) as of April 12th

~ 2000 kg x day usable for further background studies

Future Goals

- neutron calibration: deployment system in preparation
- ন্থ improve fiducialization
- - ✓ 600I of PC+TMB distilled to separate components
 - ✓ plan: dispose TMB and re-use PC
- Replace AAr with UAr: Aug-Sep
 - \sim reduce ³⁹Ar background by a factor > 150

 \mathbf{a}

Thank you

Scene

Baseline

Stdev

PSD simulation

110 PE < S1 <115 PE

simulation

²¹⁴Bi-²¹⁴Po

Clear alpha signal made clearer by coincidence at same-z.

Cryogenic for DS-50 TPC

DETECTING TPC-VETO COINCIDENCES

