Sample detectors

Marco Incagli – 16/07/2014

	$\Delta E/E$ em	$\Delta E/E$ had Charge		PSF	acceptance				
	(asymprotic)	(asymptotic)	Discrimination	(degrees)	(m^2sr)				
Magnetic	2%	40%	up to 5.6 TeV (e^+)	0.5	0.65				
Detector	up to 1.5 TeV (\bar{p})								
γ telescope	2%	40%	-	0.05	2.5				
Calorimeter	1%	20%	-	0.5	6				

three main points

- 1. charge confusion
- 2. nuclei
- 3. isotopes

1. charge confusion

 it depends on the ratio r between particle and antiparticle flux

r	10-1	10^{-2}	10^{-3}	10^{-4}	10^{-5}
f_{CC}	0.83	0.45	0.33	0.27	0.23
R_{CC} (TeV)	5.63	3.07	2.25	1.82	1.53

• The last line is for a detector with $R_{MDR} = 6.7$ TeV

- The table is based on two assumptions:
 - the uncertainty on Charge Confusion (or spillover)
 is 10%
 - the maximum amount of spillover events is <10% of the signal, i.e. the uncertainty on the measurement due to charge confusion is <10%</p>
- These are somewhat arbitrary assumptions (but see next slide)

Charge confusion in AMS for positron fraction measurement

• The uncertainty in the last bin is 10% and it is dominated by *spillover effects*

difference between spillover and charge confusion

- spillover is due to finite tracker point resolution: it does not depend on the particle type;
- charge confusion has an additional contribution due to secondary hits along the track: interactions, bremmstrhalung, noise (normally less important), backsplash from calorimeter (relevant in lower layers)

2. nuclei

 Z discrimination capability not particularly related to the three categories we have identified

3. isotopes

• normally done with momentum and β measurement:

$$A = \frac{RZe}{m_n\beta c^2}\sqrt{1-\beta^2} \qquad \left(\frac{\delta A}{A}\right)^2 = \left(\gamma\frac{\delta\beta}{\beta}\right)^2 + \left(\frac{\delta R}{R}\right)^2$$

- in principle it can be done with Energy E, instead of Rigidity,
 but energy for nuclei is poorly determined
- Ex: Be9/Be10 needs a δ A/A of at most 5% \rightarrow for $\delta\beta/\beta=10^{-2}$ it can be done up to $\gamma=5$