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KEYWORDS AND PROSPECTIVES

» Cosmic rays, gamma rays, dark matter.
» High-energy (> 10 GeV).

> Luckely, in real life, this effectively factors out much of the energy
dependences.

Science objectives — requirements — instrument design.
Current instruments — limiting factors — how can we improve?

Current instruments — realistic improvement — science case?

=

New instrument concept — Science objectives?

» Slightly different questions and yet all legitimate and interesting.
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BASIC GOAL OF THE DISCUSSION

(ONE WAY TO PUT IT)

IRF Cosmic-rays Gamma-rays DM

Acceptance TBD TBD TBD
Field of view TBD TBD TBD
Energy resolution TBD TBD TBD
Point-spread function (PSF) TBD TBD TBD

» Measure the relative importance of the different items in this table.
> Not in abstract, but in connection with the science objectives.
» Some are easy.
> e.g. the PSF for charged CR is not critical (a few deg is enough for
large-scale anisotropy searches).
» Some are more subtle.
» What is the best compromise between PSF and acceptance for a
realistic high-energy gamma-ray detector?
» Impossible to optimize all the aspects at the same time, so need to
make choices.
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BASIC FORMALISM (1/2)

TRIVIAL AS IT IS, LET’S START FROM A SHORT RECAP

» Source brightness
» Flux - for point sources [m~* s~ ! GeV™'];
> Intensity -2 for isotropic sources [m > s~ ' sr™! GeV'].
» (Instantaneous) coIIecting power of the detector:
> Effective area [m*]: -2 = Az x 2.
> This is a function of energy and |nC|dence angle in the detector;
» Acceptance (geometric factor) [m? sr]: -2 = G x 2.
> And also keep in mind that FoV= A%;/G.
» Exposure—encapsulates the observing time T,psand link the
brightness to the
» Exposure [m? year]: £(E) = Aeg(E) X Tobs;
> This is for one particular direction in the sky and involves the detailed
observing profile of the instrument.
» Exposure factor [m? sr year]: &(E) = G(E) X Tobs.
» If the sky exposure is uniform (a la Fermi) then E(E) ~ gi(f)

> The entire LAT mission integrates £ ~ 1 m? sr and & ~ 15 m? sr
(above ~ 10 GeV).
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BASIC FORMALISM (2/2)

TRIVIAL AS IT IS, LET’S START FROM A SHORT RECAP

» Energy dispersion.
» pdf of measuring an energy E’ given a true energy E.
» For any given (true) energy and incidence angle, this is a function.
» Typically summarized by its width (energy resolution).

» Point-spread function.
» pdf of measuring a direction v’ given a true direction v.
> If you assume azimuthal symmetry (around v) this is a function of a
single variable (the space angle between the two directions);
> i.e., conceptually similar to the energy dispersion, except for the fact
that it is positive-definite.
» Customarily measured by the 68% and 95% containment angles.
» Rigidity resolution and MDR
» For magnetic spectrometers (up to what energy can we distinguish
the sign of the charge).
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WHERE DO WE STAND?

Experiment Peak G [m2 st] Tobs lyear] cE/E

et o4 ) e, o P
Agile - -
AMS-02 0.05 20 2% @ 50 GeV ?
ATIC 0.24 0.15
CREAM - - 0.43 0.5
Fermi 2.8 @50 Gevl! 2.0 @ 10 GeV - 10 5-15% -
PaMela 0.00215 - 0.00215 7 5-10%
CALET 0.12 5 2% @1 TeV 40% @ 1 TeV
DAMPE 0.3 0.2 0.2 3 1.5% @ 800 GeV 40% @ 800 GeV
Gamma-400 0482 7 1% @ 10 GeV -
Gamma-400 (CC3) 3401 TeV 3901 TeV 7 2% @1 TeV 35% @ 1 Tev4
HERD 3 10 1% @ 100 GeV 30% @ 1 TeV

» Note that a fair comparison between so many different instrument is
close to impossible.

> (Take this numbers cum grano salis).

» And quite a few numbers are missing.

IThe acceptance for et @ 1 TeV is ~ 0.9 m? sr [PRD 82 092004 (2010)].
2[AIP Proc. 1516, 288-292 (2013)] quotes a FoV of 1.2 sr, which seems in

contradiction with the drawing of the instrument.
3Alternative design including CALOCUBE.

4As good as 15% when exploiting a dual readout.
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WHAT NEXT?

NoT IN THE INFN SENSE, THOUGH THE TWO ARE CONNECTED

» Science targets: cosmic/gamma rays and indirect dark matter
searches.
» Energy range: above 10 GeV.
> And no, we're not trying to go below 100 MeV at the same time.
» This is not linked, a priori to any of the projects being proposed for
the near future.
» Though we could conceivably provide inputs to such projects.
» And here are the three musketeers.

High-energy (above ~ 10 GeV) space experiment

A

(1) Magnetic spectrometer Calorimetric experiment

(a la AMS-02) A

(2) Pair-conversion telescope  (3) CR calorimeter
(a la Fermi-LAT) (a la CREAM/ATIC)
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SPECTROMETERS VS. CALORIMETERS

TOP-LEVEL SUMMARY

v

Spectrometers discriminate the sign of the charge.
> e.g., you get to measure positrons and antiprotons.

v

Spectrometers can measure velocity and momentum.
> e.g. you have access to CR isotopical composition.

v

Calorimeters are relatively bigger.
» Big magnets are heavy.
> You can't really make a spectrometer as big as a purely calorimetric
experiments with the same constraints.

v

And a calorimeter vs. a pair-conversion telescope? Isn't it the same
thing?

> The pair-conversion telescope features a dedicated tracking stage.

> You do get a much better PSF (< 0.1° vs. ~ 0.5-1°).

> You also somewhat add complexity and reduce the FOV.
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RECAP OF THE CR CHEMICAL COMPOSITION
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INTEGRAL COUNT SPECTRA 1/3

PROTONS AND ALL-ELECTRONS
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> Integral spectra from a weighted average of all the most recent
available measurements.

» And extrapolated (within reason) at high energy.

» For reference, our option (3) gives ~ 50 m? sr year in 10 years.

Luca Baldini (UNIPI and INFN) Pisa, May 9, 2014



INTEGRAL COUNT SPECTRA 2/3

ANTIPROTONS AND POSITRONS
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» Integral spectra from a weighted average of all the most recent

available measurements.

» And extrapolated (within reason) at high energy.

» For reference, our option (1) gives ~ 7.5 m? sr year in 10 years.

» But statistics might not be the only issue, here.
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INTEGRAL COUNT SPECTRA 3/3

NUCLET AND GAMMA RAYS
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» Integral spectra from a weighted average of all the most recent
available measurements.

» And extrapolated (within reason) at high energy.
» And here we're back to the ~ 50 m? sr year in 10 years of (3).
» Much more on gamma rays in the following.
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THE CHALLENGE OF BACKGROUND REJECTION
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» Statistics is not necessarily the only limiting factor.

> e.g., electron/proton separation;
» or charge confusion.
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CR ANISOTROPIES AND STATISTICS
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» Basic formalism for the minimum detectable integral dipole

anisotropy:
V2n,

V Nevents

» And real life is more complicated, but this sets the stage for the
discussion.

5:
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CHARGED CRS AND ENERGY RESOLUTION
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> lllustrative exercise:
> Take a proton spectrum a la Pamela—break at 230 GeV, index goes
from —2.85 to —2.67.
» Fold it with a 40% (gaussian) energy dispersion.
» You get a 10-15% ~ rigid shift, but the break is still there.
» You don’t need (nor you can achieve) a terrific energy resolution
with hadrons.
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AND THE ROLE OF THE OBSERVING STRATEGY

THIS IS REALLY FOR GAMMA RAYS

107

10?

Fraction of the sky seen at any time

10°

o

6,

hmax [°]

» Naive parameterization of the effective area.
» When the direction in the sky is important you get to choose:
> do | accumulate exposure in one particular region or spread it out
~ evenly across the sky?
> (a.k.a. the observing strategy.)
> It could make a difference of factors!
» Cannot discuss a gamma-ray instrument in abstract.
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A CLOSE-UP ON THE GDE
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» Prospects for studying the high-energy DGE:

> arguably, an instrument with a much better PSF than Fermi (e.g.,
Gamma-400) will do much better in mapping out the details.

» The DGE is a foreground for all the gamma-ray analyses!

> Improving here, would be just terrific.

» How do | quantify it all?
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A CLOSE-UP ON THE GDE

» Well... Take a patch of the sky subtending a solid angle equivalent
to a circle with a radius of the PSF 68% containment:

AQ(E) = 27 [1 — cos Oes(E)] ~ m035(E)
» Calculate the integral count spectrum above a given energy Ey from
such a patch:
nﬁs(Eo) = fgoo JDGE(E)E(E)AQ(E)dE
» And | argue that when this number is less than, say, ~ 10 you are
not really resolving the sub-PSF details of the DGE anymore.
» This is really a complicate interplay of the PSF and the acceptance
(again).
» Any attempt of discussing IRFs (PSF or energy resolution) with no
explicit reference to the detector acceptance is at least misleading.

» Ok, now we can play this game for all directions in the sky.
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A CLOSE-UP ON THE GDE
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» Remember: 0.15° is representative of the high-energy PSF 68%
containment of the LAT.

» And ~ 1 m? sr year is representative of the exposure accumulated by
the LAT in the entire mission.
» The LAT limited by statistics (for the DGE) above 10 GeV.

» A better PSF would not help.
» Not even in the Galactic center.
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A CLOSE-UP ON THE GDE

=
o

PSF 68% containment [°]

10" 1 10
Acceptance [m? sr]
> Iso-sensitivity lines in the PSF-Acceptance phase space.
» Galactic center, for a threshold energy of 10 and 100 GeV.
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AND NOW POINT SOURCES

POWER-LAW SOURCE DETECTION ENVELOPE

Power—Law Detection Threshold

107°F
F . Fermi LAT
Crab Nebula
p 1071
e 10% Crab Nebula
o
jed
<L
> _-
L 107
> E
1% Crab Nebula
F 10 years
107 . . .

0.1 1.0 10.0 100.0
Energy (GeV)

» Assume a plain power-law, scan the index and find the minimum
normalization for which the source is detected.
» Envelope of the power-laws plotted.
» Note the different scaling at low (background-dominated, o v/T)
and high (counting statistics dominated, < T) energy.
» Key is the scaling of the PSF with energy.
» And again: at high energy the acceptance is the limiting factor.
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AND NOW (HIGH-ENERCY) POINT SOURCES
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» Compiled from the Fermi 1FHL (sources above 10 GeV).
» 514 sources, with spectral properties.
» Keep in mind: ~ 1 m? sr year is representative of the exposure
accumulated by the LAT in the entire mission.
> Read on the y-axis ~ the number of source photons detected by the
LAT in the entire mission.

» Wondering what the brightest sources are? Crab, Vela-X, Mkn 421.
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AND NOW (HIGH-ENERGY) POINT SOURCES
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» Compiled from the Fermi 1FHL (sources above 10 GeV).

» 514 sources, with spectral properties.
» Keep in mind: ~ 1 m? sr year is representative of the exposure

accumulated by the LAT in the entire mission.
> Read on the y-axis ~ the number of source photons detected by the
LAT in the entire mission.

» Wondering what the brightest sources are? Crab, Vela-X, Mkn 421.
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WHAT ABOUT SOURCE VARIABILITY?

» The gamma-ray sky is highly variable.
» Multi-wavelength studies need simultaneous data.

v

A space-based, large-FOV instrument is key to complement what
can be done from the ground with IACTs.

> True!

v

But keep in mind the previous slides.

» With Fermi we are running at a rate r ~ 10 photons per year above
10 GeV for a reasonably bright source.

v

This sets the minimum time scale T, for detecting variability
T, > k/r

typically with k > 1 (it depends on the flux enhancement).

» We are talking about months in most of the times. Not days, not
weeks.
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AND GRBs
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» This is a very LAT-centric plot, based on 35 bursts detected in the
first three years of operation.

» The 95 GeV photon from GRB130427A (z = 0.34) is probably worth

mentioning.
» Bottom line: the LAT sees 2—3 photons per year above 10 GeV from
GRB:s.
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THE ISOTROPIC GAMMA-RAY BACKGROUND
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» The usual integral count spectrum.

» This is obtained extrapolating the LAT measurements between
200 MeV and 100 GeV.

» But...
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THE ISOTROPIC GAMMA-RAY BACKGROUND

PRESENTED BY KEITH BECHTOL AT THE APRIL APS MEETING

—
Q

1 T rrrrmr T T T T IIIIIIII T IIIIIIII T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIIII T Illﬂg
— % EGRET - Strong et al. 2004 =

Fermi LAT, IGRB + resolved sources (|b|>20) —

foreground model A

-
<
X}

Galactic foreground modeling uncertainty

EZ dN/JE [MeV cm® 51 sr1]

-
<
&
I IIIII|T|

—%—— HEAO-1 - Gruber et al. 1999
HEAO-A4 (MED) - Kinzer et al. 1997
10 E~ — & Nagoya balloon - Fukada et al_ 1975
E —*—— ASCA - Gendreau et al. 1995
: SMM - Watanabe et al. 1997
RXTE - Revnivtsev et al. 2003
BAT - Ajello et al. 2008

INTEGRAL - Churazov et al. 2007
COMPTEL - Weidenspointner et al. 2000 Total EG B
1076 1 IIIIIII| 1 IIIIIII| 1 IIIIIIII 1 IIIIIIII 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1 IIIIIIII 11111

10° 102 107 1 10 102 10° 10* 10° 10°
Energy [MeV]

Luca Baldini



A GAMMA-RAY LINE IN THE GALACTIC CENTER‘?

TIME EVOLUTION OF THE SIGNAL, SEE ARXIV:1
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» Weniger's updated results are consistent with the results from the
recent LAT line-search paper.

> Likely that the original putative line signal was a statistical
fluctuation.

» More data and Pass 8 will hopefully give the final word.
> (But this is not a LAT talk, so it's time to move on.)
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http://arxiv.org/abs/1303.1798

LINE SEARCH SENSITIVITY

Energy resolution [%]

Exposure factor [m2 sryear]

» The basic figure of merit Q is

Ns gf
XX

\/ﬁ O'E/E.

» Better energy resolution is good!

» But only if you are not trading too much acceptance for that.
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DWARF SPHEROIDAL GALAXIES: A CASE STUDY
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» Customarily considered as the cleanest target for DM searches.

» J-factors kinematically constrained within a factor of ~ 2.

» Small astrophysical background.

> Provide some of the most stringent limits on WIMP annihilation.
» Current IACTs rule at high WIMP masses.

> The peak in the E2dN/dE spectrum for the b-bbar channel is at

about 5% of the WIMP mass
» 500 GeV on this plot is really ~ 25 GeV in photon energy.
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AXION SEARCHES

Sixth Symposium on Large TPCs for Low Energy Rare Event Detection IOP Publishing
Journal of Physics: Conference Series 460 (2013) 012015 doi:10.1088/1742-6596/460/1/012015

1 domain, g=8x10""GeV", m, =2 neV, Em! =1TeV
T T T

. 4 1
1 . -
£ ] E 08
© F hbm ] o
09— —
U ] 0
o F g R
Y- —
— - E 1
I F ] N
=~ o7 1 T o0
Y 07: ] o
o F— —8=5 / 1 06
06~ 5=10 (VA .
' —— 8=15 ~ . A 10? 107" 1 10
o=: . . . ] Energy [TeV]

3
B3

Er:ergy (TeV)
Figure 8. Example of ALP induced
Figure 7. Spectral oscillation patterns in irregularity in the TeV range (top panel: Raw
domains with coherent magnetic field and signal, bottom panel: Signal smeared with
different ALP parameters (figure from [36]). ~ HESS resolution, figure from [38, 39]).
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TENTATIVE RECAP

AND PERSONAL, TOO

v

A large acceptance is key to most of the science targets.
» This is especially true for gamma rays!
» The gamma-ray sky is variable, but only with a high enough
statistics.
» Any science case for the instrument design to be driven by the PSF?
> Not for charged CR (we're interested in mid-to-large scale
anisotropies at most).
» And for gammas? Can we really exploit a sub-LAT PSF with the
acceptance we can reasonably achieve?
» Energy resolution.
» Not critical for hadrons, provided that it's decent.
» Search for features in the CRE spectrum?
» There is some possible discovery space in gamma rays: lines, axions.
Basic question: spectrometer or calorimeter?
> If we go with the latter, make it as big as possible.
» And synergies are important.
» The gamma-ray community seems to think that the highest energy
will be best served by CTA (and ground-based observatories) in the
future.

v
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(1) A MAGNETIC SPECTROMETER

A.K.A. AMS-037

» Geometric factor: ~ 0.75 m? sr
> Mind this will be heavy!
» Charge discrimination:
> upto~ 8 TeV for et /e™;
> up to ~ 800 GeV for p/p.
» |sotopical composition.
» Point-spread function at the level of ~ 0.5°.
» Measurement of Z for nuclei:
» Something along the lines of AZ = 0.1+ 0.02Z.
» Energy resolution:

» EM showers: ~ 10%/VE @ 1%;
» Hadronic showers: ~ 40%.
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(2) A PAIR-CONVERSION TELESCOPE

Geometric factor: ~ 1.5 m? sr

v

» Similar (or slightly smaller) than Fermi.

v

This would be optimized for the best PSF and energy resolution.

v

Point-spread function at the level of ~ 0.05°.

v

Energy resolution:
» EM showers: ~ 10%/VE ® 1%;
» Hadronic showers: ~ 40%.

And we also assume a decent measurement of Z for nuclei.

v
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(3) A CR CALORIMETER

» Geometric factor: ~ 5 m? sr
» This would be optimized for the largest acceptance and for response
to hadrons
» Point-spread function at the level of ~ 1°.
» Energy resolution:
» High-energy EM showers: ~ 2%;
» Hadronic showers: ~ 15%.
» And again a measurement of Z for nuclei.

» AZ =0.05+0.014% 7
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GAMMA-RAY LINE IN THE GALACTIC CENTER?

WENIGER, JCAP 1208, 007 (2012) AND MANY OTHERS

| Signal counts: 57.0 (4.630) 80.5 - 210.1 GeV’
22.1/22

Reg4
Contr. a=1.15

p-value=0.46, x2
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» Good example of a results based on Fermi data from outside the
collaboration with a huge echo in the community.

» Triggered a large number of follow-up papers.

» With the ~ same feature found literally all over the place.

Luca Baldini (UNIPI and INFN) Pisa, May 9, 2014 Spare slides



A GAMMA-RAY LINE IN THE GALACTIC CENTER?

ARX1V:1305.5597

10725 T T
3.7 year R16 Einasto Profile
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» Line-search paper published on PRD by the LAT collaboration.
» Broader scope, but addressing the question of the 130 GeV line.

» Significance slightly lower with updated instrument calibration and
better energy dispersion model.

> Feature seems to be narrower than the energy resolution.

> (Smaller) feature at the same E in the Earth limb control sample.

» Too early to draw any definitive conclusion with 3.7 years of data.
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http://arxiv.org/abs/1305.5597

SYNERGIES: CTA
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» Differential source sensitivity curves.
» LAT: 10 years, high-latitude.
» IACTs: 100 hours.

» The curve cross around ~ 50 GeV.

Luca Baldini (UNIPI and INFN) Pisa, May 9, 2014 Spare slides



SYNERGIES: CTA, LHAASO AND HAWK
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» Note LHAASO only appears in the title but we should keep an eye
on it.
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DISSECTING GAMMA-RAY SKY

» The ~-ray sky:

» Rate map (exposure corrected) of «-candidates above 200 MeV
collected during the first year of data taking.
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DISSECTING GAMMA-RAY SKY
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» Resolved point sources:

> The catalogs are among the most important collaboration science
products.
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DISSECTING GAMMA-RAY SKY

» Galactic diffuse radiation (accounts for the majority of photons):

» Cosmic-ray interactions with the interstellar medium (synchrotron,
inverse Compton, 7° decay, bremsstrahlung).
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DISSECTING GAMMA-RAY SKY

» Isotropic diffuse emission:

» Unresolved sources and truly diffuse (extragalactic) emission;
» Residual cosmic-rays surviving background rejection filters.
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