

HIGH-ENERGY COSMIC-RAY AND GAMMA-RAY DETECTORS An experimental overview

> Luca Baldini Università and INFN-Pisa Iuca.baldini@pi.infn.it

Pisa, May 9, 2014

- Cosmic rays, gamma rays, dark matter.
- ► High-energy (> 10 GeV).
 - Luckely, in real life, this effectively factors out much of the energy dependences.
- 1. Science objectives \rightarrow requirements \rightarrow instrument design.
- 2. Current instruments \rightarrow limiting factors \rightarrow how can we improve?
- 3. Current instruments \rightarrow realistic improvement \rightarrow science case?
- 4. New instrument concept \rightarrow Science objectives?
- Slightly different questions and yet all legitimate and interesting.

BASIC GOAL OF THE DISCUSSION (One way to put it)

IRF	Cosmic-rays	Gamma-rays	DM
Acceptance	TBD	TBD	TBD
Field of view	TBD	TBD	TBD
Energy resolution	TBD	TBD	TBD
Point-spread function (PSF)	TBD	TBD	TBD

Measure the relative importance of the different items in this table.

Not in abstract, but in connection with the science objectives.

Some are easy.

- e.g. the PSF for charged CR is not critical (a few deg is enough for large-scale anisotropy searches).
- Some are more subtle.
 - What is the best compromise between PSF and acceptance for a realistic high-energy gamma-ray detector?
- Impossible to optimize all the aspects at the same time, so need to make choices.

BASIC FORMALISM (1/2) Trivial as it is, let's start from a short recap

- Source brightness:
 - Flux $\frac{dF}{dEdt}$ for point sources $[m^{-2} s^{-1} GeV^{-1}]$;
 - Intensity $\frac{dJ}{dEdt}$ for isotropic sources $[m^{-2} s^{-1} sr^{-1} GeV^{-1}]$.
- Instantaneous) collecting power of the detector:
 - Effective area [m²]: $\frac{dN}{dEdt} = A_{eff} \times \frac{dF}{dEdt}$
 - This is a function of energy and incidence angle in the detector;
 - Acceptance (geometric factor) $[m^2 \text{ sr}]$: $\frac{dN}{dEdt} = G \times \frac{dJ}{dEdt}$.
 - And also keep in mind that $\text{FoV} = A_{\text{eff}}^{\perp}/G$.
- Exposure—encapsulates the observing time T_{obs} and link the brightness to the
 - Exposure [m² year]: $\mathcal{E}(E) = A_{\text{eff}}(E) \times T_{\text{obs}}$;
 - This is for one particular direction in the sky and involves the detailed observing profile of the instrument.
 - Exposure factor [m² sr year]: $\mathcal{E}_{f}(E) = G(E) \times T_{obs}$.
- If the sky exposure is uniform (a la Fermi) then $\mathcal{E}(E) \sim \frac{\mathcal{E}_{f}(E)}{4\pi}$.
 - ▶ The entire LAT mission integrates $\mathcal{E} \sim 1 \text{ m}^2$ sr and $\mathcal{E}_f \sim 15 \text{ m}^2$ sr (above $\sim 10 \text{ GeV}$).

BASIC FORMALISM (2/2) Trivial as it is, let's start from a short recap

• Energy dispersion.

- pdf of measuring an energy E' given a true energy E.
- ► For any given (true) energy and incidence angle, this is a function.
- Typically summarized by its width (energy resolution).

► Point-spread function.

- pdf of measuring a direction v' given a true direction v.
- If you assume azimuthal symmetry (around v) this is a function of a single variable (the space angle between the two directions);
- i.e., conceptually similar to the energy dispersion, except for the fact that it is positive-definite.
- Customarily measured by the 68% and 95% containment angles.
- Rigidity resolution and MDR
 - For magnetic spectrometers (up to what energy can we distinguish the sign of the charge).

WHERE DO WE STAND?

Experiment		Peak G [m ² sr]		T _{obs} [year]	σΕ/Ε	
	e±	γ	Р		e^{\pm}, γ	р
Agile	-		-			
AMS-02		0.05		20	2% @ 50 GeV	?
ATIC		0.24		0.15		
CREAM	-	-	0.43	0.5		
Fermi	2.8 @ 50 GeV ¹	2.0 @ 10 GeV	-	10	5-15%	-
PaMeLa	0.00215	-	0.00215	7	5-10%	
CALET		0.12		5	2% @ 1 TeV	40% @ 1 TeV
DAMPE	0.3	0.2	0.2	3	1.5% @ 800 GeV	40% @ 800 GeV
Gamma-400		0.48 2		7	1% @ 10 GeV	-
Gamma-400 (C	(C ³) 3.4 (1 TeV	3.9 @ 1 TeV	7	2% @ 1 TeV	35% @ 1 TeV ⁴
HERD	·	3		10	1% @ 100 GeV	30% @ 1 TeV

 Note that a fair comparison between so many different instrument is close to impossible.

- (Take this numbers *cum grano salis*).
- And quite a few numbers are missing.

¹The acceptance for e^{\pm} @ 1 TeV is \sim 0.9 m² sr [PRD 82 092004 (2010)]. ₂[AIP Proc. 1516, 288-292 (2013)] quotes a FoV of 1.2 sr, which seems in

contradiction with the drawing of the instrument.

³Alternative design including CALOCUBE.

⁴As good as 15% when exploiting a dual readout.

WHAT NEXT?

NOT IN THE INFN SENSE, THOUGH THE TWO ARE CONNECTED

- Science targets: cosmic/gamma rays and indirect dark matter searches.
- Energy range: above 10 GeV.
 - And no, we're not trying to go below 100 MeV at the same time.
- This is not linked, a priori to any of the projects being proposed for the near future.
 - Though we could conceivably provide inputs to such projects.
- And here are the three musketeers.

SPECTROMETERS VS. CALORIMETERS TOP-LEVEL SUMMARY

- Spectrometers discriminate the sign of the charge.
 - e.g., you get to measure positrons and antiprotons.
- Spectrometers can measure velocity and momentum.
 - e.g. you have access to CR isotopical composition.
- Calorimeters are relatively bigger.
 - Big magnets are heavy.
 - You can't really make a spectrometer as big as a purely calorimetric experiments with the same constraints.
- And a calorimeter vs. a pair-conversion telescope? Isn't it the same thing?
 - The pair-conversion telescope features a dedicated tracking stage.
 - You do get a much better PSF (< 0.1° vs. \sim 0.5–1°).
 - You also somewhat add complexity and reduce the FOV.

RECAP OF THE CR CHEMICAL COMPOSITION

INTEGRAL COUNT SPECTRA 1/3 PROTONS AND ALL-ELECTRONS

- Integral spectra from a weighted average of all the most recent available measurements.
 - And extrapolated (within reason) at high energy.
- For reference, our option (3) gives $\sim 50 \text{ m}^2$ sr year in 10 years.

INTEGRAL COUNT SPECTRA 2/3

ANTIPROTONS AND POSITRONS

- Integral spectra from a weighted average of all the most recent available measurements.
 - And extrapolated (within reason) at high energy.
- For reference, our option (1) gives $\sim 7.5 \text{ m}^2$ sr year in 10 years.
 - But statistics might not be the only issue, here.

INTEGRAL COUNT SPECTRA 3/3

NUCLEI AND GAMMA RAYS

 Integral spectra from a weighted average of all the most recent available measurements.

- And extrapolated (within reason) at high energy.
- And here we're back to the $\sim 50 \text{ m}^2$ sr year in 10 years of (3).
 - Much more on gamma rays in the following.

THE CHALLENGE OF BACKGROUND REJECTION

- Statistics is not necessarily the only limiting factor.
 - e.g., electron/proton separation;
 - or charge confusion.

CR ANISOTROPIES AND STATISTICS

 Basic formalism for the minimum detectable integral dipole anisotropy:

$$\delta = \frac{\sqrt{2n_{\sigma}}}{\sqrt{N_{events}}}.$$

And real life is more complicated, but this sets the stage for the discussion.

CHARGED CRS AND ENERGY RESOLUTION

Illustrative exercise:

- Take a proton spectrum a la Pamela—break at 230 GeV, index goes from -2.85 to -2.67.
- ► Fold it with a 40% (gaussian) energy dispersion.
- \blacktriangleright You get a 10–15% \sim rigid shift, but the break is still there.
- You don't need (nor you can achieve) a terrific energy resolution with hadrons.

AND THE ROLE OF THE OBSERVING STRATEGY THIS IS REALLY FOR GAMMA RAYS

- Naïve parameterization of the effective area.
- When the direction in the sky is important you get to choose:
 - \blacktriangleright do I accumulate exposure in one particular region or spread it out \sim evenly across the sky?
 - (a.k.a. the observing strategy.)
- It could make a difference of factors!
 - Cannot discuss a gamma-ray instrument in abstract.

- Prospects for studying the high-energy DGE:
 - arguably, an instrument with a much better PSF than Fermi (e.g., Gamma-400) will do much better in mapping out the details.
- ► The DGE is a foreground for *all* the gamma-ray analyses!
 - Improving here, would be just terrific.
- How do I quantify it all?

► Well... Take a patch of the sky subtending a solid angle equivalent to a circle with a radius of the PSF 68% containment:

 $\Delta\Omega(E) = 2\pi \left[1 - \cos\theta_{68}(E)\right] \sim \pi\theta_{68}^2(E)$

► Calculate the integral count spectrum above a given energy *E*₀ from such a patch:

 $n_{68}(E_0) = \int_{E_0}^{\infty} J_{DGE}(E) \mathcal{E}(E) \Delta \Omega(E) dE$

- \blacktriangleright And I argue that when this number is less than, say, \sim 10 you are not really resolving the sub-PSF details of the DGE anymore.
- This is really a complicate interplay of the PSF and the acceptance (again).
 - Any attempt of discussing IRFs (PSF or energy resolution) with no explicit reference to the detector acceptance is at least misleading.
- Ok, now we can play this game for all directions in the sky.

- Remember: 0.15° is representative of the high-energy PSF 68% containment of the LAT.
- \blacktriangleright And $\sim 1~\text{m}^2$ sr year is representative of the exposure accumulated by the LAT in the entire mission.
- ▶ The LAT limited by statistics (for the DGE) above 10 GeV.
 - A better PSF would not help.
 - Not even in the Galactic center.

Iso-sensitivity lines in the PSF-Acceptance phase space.

Galactic center, for a threshold energy of 10 and 100 GeV.

$$\theta_{68} = \left(\frac{4N_{\min}}{T_{obs}\int_{E_0}^{\infty}I(E)dE}\right)^{\frac{1}{2}}G^{-\frac{1}{2}}$$

AND NOW POINT SOURCES POWER-LAW SOURCE DETECTION ENVELOPE

- Assume a plain power-law, scan the index and find the minimum normalization for which the source is detected.
 - Envelope of the power-laws plotted.
- Note the different scaling at low (background-dominated, ∝ √T) and high (counting statistics dominated, ∝ T) energy.
- Key is the scaling of the PSF with energy.
 - And again: at high energy the acceptance is the limiting factor.

AND NOW (HIGH-ENERGY) POINT SOURCES

- Compiled from the Fermi 1FHL (sources above 10 GeV).
 - ► 514 sources, with spectral properties.
- \blacktriangleright Keep in mind: $\sim 1~m^2$ sr year is representative of the exposure accumulated by the LAT in the entire mission.
 - Read on the y-axis ~ the number of source photons detected by the LAT in the entire mission.
- ▶ Wondering what the brightest sources are? Crab, Vela-X, Mkn 421.

AND NOW (HIGH-ENERGY) POINT SOURCES

- Compiled from the Fermi 1FHL (sources above 10 GeV).
 - ► 514 sources, with spectral properties.
- \blacktriangleright Keep in mind: $\sim 1~m^2$ sr year is representative of the exposure accumulated by the LAT in the entire mission.
 - Read on the y-axis ~ the number of source photons detected by the LAT in the entire mission.
- ▶ Wondering what the brightest sources are? Crab, Vela-X, Mkn 421.

WHAT ABOUT SOURCE VARIABILITY?

- The gamma-ray sky is highly variable.
 - Multi-wavelength studies need simultaneous data.
- A space-based, large-FOV instrument is key to complement what can be done from the ground with IACTs.
 - True!
- But keep in mind the previous slides.
 - With Fermi we are running at a rate r ~ 10 photons per year above 10 GeV for a reasonably bright source.
- This sets the minimum time scale T_v for detecting variability

 $T_v > k/r$

typically with k > 1 (it depends on the flux enhancement).

 We are talking about *months* in most of the times. Not days, not weeks.

AND GRBS

- This is a very LAT-centric plot, based on 35 bursts detected in the first three years of operation.
 - ► The 95 GeV photon from GRB130427A (z = 0.34) is probably worth mentioning.
- Bottom line: the LAT sees 2–3 photons *per year* above 10 GeV from GRBs.

► The usual integral count spectrum.

- This is obtained extrapolating the LAT measurements between 200 MeV and 100 GeV.
- ▶ But...

THE ISOTROPIC GAMMA-RAY BACKGROUND PRESENTED BY KEITH BECHTOL AT THE APRIL APS MEETING

A GAMMA-RAY LINE IN THE GALACTIC CENTER? Time evolution of the signal, see arXiv:1303.1798

- Weniger's updated results are consistent with the results from the recent LAT line-search paper.
 - Likely that the original putative line signal was a statistical fluctuation.
- ▶ More data and Pass 8 will hopefully give the final word.
 - (But this is not a LAT talk, so it's time to move on.)

LINE SEARCH SENSITIVITY

► The basic figure of merit *Q* is

$$Q = rac{n_s}{\sqrt{n_b}} \propto \sqrt{rac{\mathcal{E}_{\mathrm{f}}}{\sigma_E/E}}.$$

- Better energy resolution is good!
 - But only if you are not trading too much acceptance for that.

DWARF SPHEROIDAL GALAXIES: A CASE STUDY

Customarily considered as the cleanest target for DM searches.

- ► J-factors kinematically constrained within a factor of ~ 2.
- Small astrophysical background.
- Provide some of the most stringent limits on WIMP annihilation.
- Current IACTs rule at high WIMP masses.
 - ► The peak in the E²dN/dE spectrum for the b-bbar channel is at about 5% of the WIMP mass
 - \blacktriangleright 500 GeV on this plot is really ~ 25 GeV in photon energy.

AXION SEARCHES

Sixth Symposium on Large TPCs for Low Energy Rare Event Detection Journal of Physics: Conference Series **460** (2013) 012015 doi:10.10

doi:10.1088/1742-6596/460/1/012015

IOP Publishing

Figure 7. Spectral oscillation patterns in domains with coherent magnetic field and different ALP parameters (figure from [36]).

Figure 8. Example of ALP induced irregularity in the TeV range (top panel: Raw signal, bottom panel: Signal smeared with HESS resolution, figure from [38, 39]).

TENTATIVE RECAP AND PERSONAL, TOO

- A large acceptance is key to most of the science targets.
 - This is especially true for gamma rays!
 - The gamma-ray sky is variable, but only with a high enough statistics.
- Any science case for the instrument design to be driven by the PSF?
 - Not for charged CR (we're interested in mid-to-large scale anisotropies at most).
 - And for gammas? Can we really exploit a sub-LAT PSF with the acceptance we can reasonably achieve?
- Energy resolution.
 - Not critical for hadrons, provided that it's decent.
 - Search for features in the CRE spectrum?
 - There is some possible discovery space in gamma rays: lines, axions.
- Basic question: spectrometer or calorimeter?
 - If we go with the latter, make it as big as possible.
- And synergies are important.
 - The gamma-ray community seems to think that the highest energy will be best served by CTA (and ground-based observatories) in the future.

(1) A MAGNETIC SPECTROMETER A.K.A. AMS-03?

- Geometric factor: $\sim 0.75 \text{ m}^2 \text{ sr}$
 - Mind this will be heavy!
- Charge discrimination:
 - up to \sim 8 TeV for e^+/e^- ;
 - up to ~ 800 GeV for p/\bar{p} .
- Isotopical composition.
- Point-spread function at the level of $\sim 0.5^{\circ}$.
- Measurement of Z for nuclei:
 - Something along the lines of $\Delta Z = 0.1 + 0.02Z$.
- Energy resolution:
 - EM showers: $\sim 10\%/\sqrt{E} \oplus 1\%$;
 - Hadronic showers: $\sim 40\%$.

(2) A pair-conversion telescope

- \blacktriangleright Geometric factor: $\sim 1.5~\text{m}^2~\text{sr}$
 - Similar (or slightly smaller) than Fermi.
- ► This would be optimized for the best PSF and energy resolution.
- Point-spread function at the level of $\sim 0.05^{\circ}$.
- Energy resolution:
 - EM showers: $\sim 10\%/\sqrt{E} \oplus 1\%$;
 - Hadronic showers: $\sim 40\%$.
- And we also assume a decent measurement of Z for nuclei.

(3) A CR CALORIMETER

- Geometric factor: $\sim 5 \text{ m}^2 \text{ sr}$
- This would be optimized for the largest acceptance and for response to hadrons
- ▶ Point-spread function at the level of ~ 1°.
- Energy resolution:
 - High-energy EM showers: ~ 2%;
 - Hadronic showers: $\sim 15\%$.
- And again a measurement of Z for nuclei.
 - $\Delta Z = 0.05 + 0.014 * Z$

SPARE SLIDES

A GAMMA-RAY LINE IN THE GALACTIC CENTER? Weniger, JCAP 1208, 007 (2012) and many others

- Good example of a results based on Fermi data from outside the collaboration with a huge echo in the community.
- Triggered a large number of follow-up papers.
 - \blacktriangleright With the \sim same feature found literally all over the place.

A GAMMA-RAY LINE IN THE GALACTIC CENTER? $_{\rm arXiv:1305.5597}$

- ► Line-search paper published on PRD by the LAT collaboration.
- ► Broader scope, but addressing the question of the 130 GeV line.
 - Significance slightly lower with updated instrument calibration and better energy dispersion model.
 - Feature seems to be narrower than the energy resolution.
 - (Smaller) feature at the same *E* in the Earth limb control sample.
- ► Too early to draw any definitive conclusion with 3.7 years of data.

Synergies: CTA

Differential source sensitivity curves.

- LAT: 10 years, high-latitude.
- IACTs: 100 hours.
- The curve cross around \sim 50 GeV.

SYNERGIES: CTA, LHAASO AND HAWK

 Note LHAASO only appears in the title but we should keep an eye on it.

• The γ -ray sky:

 Rate map (exposure corrected) of γ-candidates above 200 MeV collected during the first year of data taking.

Luca Baldini (UNIPI and INFN)

Pisa, May 9, 2014

Resolved point sources:

 The catalogs are among the most important collaboration science products.

Luca Baldini (UNIPI and INFN)

• Galactic diffuse radiation (accounts for the majority of photons):

 Cosmic-ray interactions with the interstellar medium (synchrotron, inverse Compton, π⁰ decay, bremsstrahlung).

Luca Baldini (UNIPI and INFN)

Pisa, May 9, 2014

Isotropic diffuse emission:

- Unresolved sources and truly diffuse (extragalactic) emission;
- Residual cosmic-rays surviving background rejection filters.