
Roberto De Pietri - INFN Parma & University of Parma April 1st 2014, Ferarra -------Page

Roberto De Pietri

Esperienze openACC
e openMP a Parma

Problems porting application
to many-core and GPU systems!
!
R De Pietri, R. Alfieri,  
M. Borelli, A.Feo, P. Leoni

!1

Summary - purpose of the research
❖ To check if it is easy to create a simulation program that

can be easily ported to different architecture!
❖ How to write a program that run in many-core, GPU,

standard CPU and communicating through the MPI-
library!

❖ How well it performs …..!
❖ Which ones are the best strategy to tune it … !
❖ MINIMAL MODIFICATION TO STANDARD CODE

Problem type we are looking for
❖ Time evolution of Partial

Differential Equations on a
cartesian grid"

❖ The evolution use differential
operation with a fixed stencil
size"

❖ The variables that correspond
to the “physical space” need to
be partitioned to be executed
on different physical
computing nodes that
comunicate which each other

The conditions we would like to match
❖ 3d grids"
❖ variable number of ghost size!
❖ different number of floating point

variables associated to each grid
point"

❖ different number of floating
points operation needed for the
update of the variables associated
to each grid-point.!

❖ When a single physical node do
not have all the memory needed
to store the configuration.

❖ A grid size of 1000x1000x1000 with 10
variables for each grid point and 3 time
levels requires 300GBytes of memory!

❖ IF the update of a grid variable for each
point requires 50 Flops for a time step,
the total number of floating point
operations that would be required is 1
TFlops …. Usually we need to do, at
least, 10000-20000 time steps…."

❖ clock frequency is not going up and
indeed the # of floating point
operations for functional units will not
increase.!

❖ We need to partition the computation !

The “game of life”

❖ Just a simple update rule !
❖ + a local computation that can get easily vectorized

by compiler  
Nc -> sum = a[i]*b[i]!

❖ Total computations (26GFlop/5.28 TFlop(Nc=1000))

Our main update routine
❖ Total computations"

❖ # update=10"

❖ max grid 17000x17000"

❖ vector computation =
ncomp*2 Flops"

❖ rule = 10 Flops "

❖ ncomp=0 : 26GFlop"

❖ ncomp=1000 : 5.28TFlop

 // Compute Internals
 #pragma acc parallel present(grid[nrows+2][ncols+2],\
 next_grid[nrows+2][ncols+2],sum,A[0:ncomp],B[0:ncomp]) \
 async(2) num_gans(100) vector_length(16)
 {
 #pragma acc loop gang independent
 #pragma omp for private(i,j,k,neighbors,sum)
 for (i=rmin_int; i<=rmax_int; i++) {
 #pragma acc loop worker independent
 for (j=cmin_int; j<=cmax_int; j++) {
 #pragma ivdep
 #pragma vector aligned
 #pragma acc loop vector independent reduction(+: sum) \
 private(sum)
 for (k=0; k < ncomp; k++) sum += A[k] + B[k];
 // LIFE
 neighbors = grid[i+1][j+1] + grid[i+1][j] + grid[i+1][j-1]
 + grid[i][j+1] + grid[i][j-1] + grid[i-1][j+1]+grid[i-1][j]
 + grid[i-1][j-1];
 if ((neighbors > 3.0) || (neighbors < 2.0))
 next_grid[i][j] = 0.0;
 else if (neighbors == 3.0)
 next_grid[i][j] = 1.0;
 else
 next_grid[i][j] = grid[i][j];
 }
 }
 } // end Compute Internale

The Nvidia KEPLER K20- GPU
❖ GPU are much different from CPU

and need a lot of effort to write a
program that run efficiently on this
architecture (CUDA/OpenCL?)

OpenACC vs OpenMP
❖ OpenACC is a programming standard for parallel computing

developed by Cray, CAPS, Nvidia and PGI. The standard is
designed to simplify parallel programming of heterogeneous
CPU/GPU systems.!

❖ Like in OpenMP, the programmer can annotate C, C++ and
Fortran source code to identify the areas that should be
accelerated using PRAGMA compiler directives and additional
functions.!

❖ OpenMP (from 4.0) will be available not only on the CPU but
also on GPU …. we need to check it out … (gcc-4.9)

OpenMP -different compiler
❖ Nthreads=16 eurora!
❖ ICC:  

icc -xavx -fopenmp  
 -vec-report2!

❖ GNU:  
gcc -mavx -fopenmp  
 -ftree-vectorize -ffast-map  
 -ftree-vectorizer-verbose=1!

❖ PGI:  
pgcc -tp=sandybridge-64  
 -Mvect=simd:256 -mp=numa  
 -fast -Minfo=vec,mp

NO -ffast-math

OpenMP -different compiler
❖ Nthreads=16 eurora!
❖ ICC:  

icc -xavx -fopenmp  
 -vec-report2!

❖ GNU:  
gcc -mavx -fopenmp  
 -ftree-vectorize -ffast-map  
 -ftree-vectorizer-verbose=1!

❖ PGI:  
pgcc -tp=sandybridge-64  
 -Mvect=simd:256 -mp=numa  
 -fast -Minfo=vec,mp

NO -ffast-math

OpenMP -different compiler
❖ Nthreads=16 eurora!
❖ ICC:  

icc -xavx -fopenmp  
 -vec-report2!

❖ GNU:  
gcc -mavx -fopenmp  
 -ftree-vectorize -ffast-map  
 -ftree-vectorizer-verbose=1!

❖ PGI:  
pgcc -tp=sandybridge-64  
 -Mvect=simd:256 -mp=numa  
 -fast -Minfo=vec,mp

NO -ffast-math

OpenACC — #kernel vs #parallel

❖ #pragma acc kernels 
Within a kernels construct, the
compiler uses classical
automatic parallelization
technology to identify parallel
loops.!

❖ #pragma acc parallel  
This is effectively the same
behavior as with OpenMP with
the nowait clause on all work-
sharing loops..

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

OpenACC — #kernel vs #parallel

❖ #pragma acc kernels 
Within a kernels construct, the
compiler uses classical
automatic parallelization
technology to identify parallel
loops.!

❖ #pragma acc parallel  
This is effectively the same
behavior as with OpenMP with
the nowait clause on all work-
sharing loops..

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

 // Compute Internals
 #pragma acc kernels present(grid[nrows+2][ncols+2], \
 next_grid[nrows+2][ncols+2],sum,A[0:ncomp],B[0:ncomp]) async(2)
 {
 #pragma acc loop gang(100) independent
 for (i=rmin_int; i<=rmax_int; i++) { // righe
 #pragma acc loop workers independent
 for (j=cmin_int; j<=cmax_int; j++) { // colonne
 #pragma vector aligned
 #pragma acc loop vector(16) reduction(+: sum) independent private(sum)
 for (k=0; k < ncomp; k++) sum += A[k] + B[k]; // COMP
 // LIFE
 neighbors = grid[i+1][j+1] + grid[i+1][j] + grid[i+1][j-1]
 + grid[i][j+1] + grid[i][j-1] + grid[i-1][j+1]+grid[i-1][j]
 +grid[i-1][j-1];
 if ((neighbors > 3.0) || (neighbors < 2.0))
 next_grid[i][j] = 0.0;
 else if (neighbors == 3.0)
 next_grid[i][j] = 1.0;
 else
 next_grid[i][j] = grid[i][j];
 }
 }
 } // end Compute Internals

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

OpenACC — #kernel vs #parallel

❖ #pragma acc kernels 
Within a kernels construct, the
compiler uses classical
automatic parallelization
technology to identify parallel
loops.!

❖ #pragma acc parallel  
This is effectively the same
behavior as with OpenMP with
the nowait clause on all work-
sharing loops..

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

 // Compute Internals
 #pragma acc kernels present(grid[nrows+2][ncols+2], \
 next_grid[nrows+2][ncols+2],sum,A[0:ncomp],B[0:ncomp]) async(2)
 {
 #pragma acc loop gang(100) independent
 for (i=rmin_int; i<=rmax_int; i++) { // righe
 #pragma acc loop workers independent
 for (j=cmin_int; j<=cmax_int; j++) { // colonne
 #pragma vector aligned
 #pragma acc loop vector(16) reduction(+: sum) independent private(sum)
 for (k=0; k < ncomp; k++) sum += A[k] + B[k]; // COMP
 // LIFE
 neighbors = grid[i+1][j+1] + grid[i+1][j] + grid[i+1][j-1]
 + grid[i][j+1] + grid[i][j-1] + grid[i-1][j+1]+grid[i-1][j]
 +grid[i-1][j-1];
 if ((neighbors > 3.0) || (neighbors < 2.0))
 next_grid[i][j] = 0.0;
 else if (neighbors == 3.0)
 next_grid[i][j] = 1.0;
 else
 next_grid[i][j] = grid[i][j];
 }
 }
 } // end Compute Internals

 // Compute Internals
 #pragma acc parallel present(grid[nrows+2][ncols+2],\
 next_grid[nrows+2][ncols+2],sum,A[0:ncomp],B[0:ncomp]) \
 async(2) num_gans(100) vector_length(16)
 {
 #pragma acc loop gang independent
 #pragma omp for private(i,j,k,neighbors,sum)
 for (i=rmin_int; i<=rmax_int; i++) {
 #pragma acc loop worker independent
 for (j=cmin_int; j<=cmax_int; j++) {
 #pragma ivdep
 #pragma vector aligned
 #pragma acc loop vector independent reduction(+: sum) private(sum)
 for (k=0; k < ncomp; k++) sum += A[k] + B[k];
 // LIFE
 neighbors = grid[i+1][j+1] + grid[i+1][j] + grid[i+1][j-1]
 + grid[i][j+1] + grid[i][j-1] + grid[i-1][j+1]+grid[i-1][j]
 +grid[i-1][j-1];
 if ((neighbors > 3.0) || (neighbors < 2.0))
 next_grid[i][j] = 0.0;
 else if (neighbors == 3.0)
 next_grid[i][j] = 1.0;
 else
 next_grid[i][j] = grid[i][j];
 }
 }
 } // end Compute Internals

http://insidehpc.com/2012/08/30/michael-wolfe-on-openacc-kernels-and-parallel-constructs/
https://www.pgroup.com/lit/articles/insider/v4n2a1.htm

upd device
buffer

ReciveBuf
2 Ext-Border

Compute
Border

Int-Border 2
SendBuffer

ReciveBuf
2 Ext-Border

Compute
Border

Int-Border 2
SendBuffer

upd host
buffer

Compute
Internals

swap grids

Compute
Internals Mpi

send-recv

Mpi
send-recv

openMP openACC

upd host
grid

acc wait

acc wait

barrier

barrier

barrier

swap grids

Init grids
Init SendBuffers
mpi-SendRecv

do_display

do_display

Init grids
Init SendBuffers
mpi-SendRecv

Copy-in grid

barrier

barrier

upd host
grid

Overlap communication/computation

❖ The copy IN-OUT and between
nodes can be started just after
the border are computed !

Overlap communications and computations

❖ The diagram below show how the communications between the
GPU and the CPU and the computations got split

The comparison of the three “devices”
❖ 17000x17000 is the

maximum size we
can load on K20 GPU!

❖ Nc=0 : 26GFlop!
❖ Nc=1000 : 5.28TFlop"
❖ K20 is declared of having

a peak performance of
1.17 Tflops!

❖ The single node on Eurora
16*2.1*8= 0.268 Tflops

#pragma acc kernel

Zefiro .vs. Eurora

❖ The same test on ZEFIRO

16 threads x 4 MPI process per node

Test MPI — “eurora" -1-4-8 nodi
❖ First test on EURORA with some MPI communications

(still a small number of nodes —- icc)

Conclusions………

❖ OpenMP / OpenACC are very promising compiler
technologies for creating portable programs that run on
different “future” architectures for HPC systems!

❖ Still difficult to get improvement with respect to OpenMP
on a full node.!

❖ Performance are still not satisfactory !!
❖ We hope to get better performances going to more Physical

systems where the computational load is better balanced.

