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The D2Q37 Lattice Boltzmann Model

@ Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

@ simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

@ a set of virtual particles called populations arranged at edges of a
discrete and regular grid

@ interacting by propagation and collision reproduce — after appropriate
averaging — the dynamics of fluids

@ D2Q37 is a D2 model with 37 components of velocity (populations)

@ suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion ' effects

@ correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = pT) equations

Tchemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.
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Computational Scheme of LBM
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Embarassing parallelism

All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge

Design an efficient implementation to exploit a large fraction of available peak
performance.

v
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D2Q37: propagation scheme

@ require to access neighbours cells at distance 1,2, and 3,

@ generate memory-accesses with sparse addressing patterns.
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D2Q37: boundary-conditions

NY-1
. . . NY-2|
@ we simulate a 2D lattice with NY-3

period-boundaries along x-direction

@ at the top and the bottom boundary
conditions are enforced:

» to adjust some values at sites
y=0...2andy=N,-3...N, — 1

» e.g. set vertical velocity to zero 2 _

-

This step (bc) is computed before the collision step.
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D2Q37 collision

@ collision is computed at each lattice-cell

@ computational intensive: for the D2Q37 model requires ~ 7600 DP
operations

@ completely local: arithmetic operations require only the populations
associate to the site
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Code implementations
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Memory layout for LB : AoS vs SoA

@ lattice stored as AoS:

typedef struct {
double pl; // population 1
double p2; // population 2

double p37; // population 37
} pop_t;

pop_t lattice2D[SIZEX*SIZEY];

@ lattice stored as SoA:

typedef struct {
double pl[SIZEX*SIZEY]; // population 1 array

double p2[SIZEX*SIZEY]; // population 2 array

double p37[SIZEX*SIZEY]; // population 37 array
} pop_t;

pop_t lattice2D;

@ AoS suitable for CPU: improves cache-locality for computing collision

@ SoA suitable for GPU: improves data coalescing
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Lattice memory allocation

@ lattice is allocated in column-major order

@ on GPU we allocated two copies of the
lattice:
each step reads from prv and write onto nxt

NY

@ a lattice of size Ly x L, is allocated as a grid
of (3+ Lx+3) x (16 + L, + 16) sites:

» make uniform computation of
propagate also for sites close to
borders

» along y-direction the size is warp- (32)
and cache-aligned (128B)
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GPU Grid Layouts

threads/work-items/vectors, each processing one lattice site.

For all GPU kernels blocks/work-group/gangs are configured as 1D array of J

NY]

Example of a physical lattice of 11 x 16 cells.
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Towards an hardware independent code

@ OpenCL

» Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

» Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

» Apparently NVIDIA do not support it anymore

@ OpenACC

» Directive based programming standard for heterogeneous parallel
computing

» Developed by Cray, CAPS, Nvidia and PGl

» At the moment it addresses only NVIDIA GPUs and some AMD

GPUs
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Independence may have costs in terms of complexity and performance J
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OpenCL/“CUDA” example

Propagate device function:

__kernel void propagate(__global const data t* prv, _ global data tx nxt) {

int ix,
iy,
site i;

// Work—item index along the X dimension.
/" Work—item index along the Y dimension.
/! Index of current site.

// Sets the work—item

indices

(Y is used as the fastest dimension).

NX*xNY
2xNX+NY
3k NX*+NY
4% NX+NY
5%NX*NY

ix = (int) get_global id(1);

iy = (int) get_global_id(0);
site_i = (HX+3+ix)*NY + (HY+iy);
nxt [ site_i] = prv[
nxt [ NX#NY + site_i] = prv|
nxt[ 24NX#NY + site i] = prv|
nxt[ 3#NX#NY + site i] = prv|
nxt|[ 4*NX#NY + site i] = prv|
nxt[ 5*«NX*NY + site_i] = prv|
nxt|[ B6x«NX+NY + site_i] = prv|

B6+NX*NY

site_i
site_i
site_i
site_i
site_i
site_i
site_i

3*NY
3*NY
3*NY
2%NY
2%NY
2%NY
2%NY
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OpenACC example

Propagate function:

inline void propagate(const data t* restrict prv, data t* restrict nxt ) {

int ix, iy, site_i;

#pragma acc kernels present(prv) present(nxt)
#pragma acc loop gang independent
for ( ix=HX; ix < (HX+SIZEX); ix++) {
#pragma acc loop vector independent
for ( iy=HY; iy<(HY+SIZEY); iy++) {

site_i = (ixxNY) + iy;

nxt [ site_i] = prv[ site_i — 3#NY + 1];
nxt [ NX*NY + site i] = prv[ NX*#NY + site i — 3xNY 1;
nxt|[ 24«NX#NY + site i] = prv[ 2#NX#NY + site i — 3xNY — 1];
nxt|[ 3#NX#NY + site i] = prv[ 3#NX#NY + site i — 2xNY + 2];
nxt|[ 44«NX+«NY + site i] = prv[ 4#NX#«NY + site i — 2xNY + 1];
nxt[ 5*%NX#NY + site_i] = prv[ 5#NX*NY + site i — 2xNY 1;
nxt[ 6#«NX+xNY + site_i] = prv[ 6xNX*«NY + site i — 2xNY — 1];
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Code implementations
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Used processors/accelerators (Eurora)

. 2 x Intel Xeon Processor E5-2658 2.10 GHz (8 core)
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Run Time Comparison

Run time (Propagate - 1920x2048 lattice)
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Run Time Comparison

Run time (Collide - 1920x2048 lattice)
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Energy Efficiency Comparison

Power usage per site (Propagate - 1920x2048 lattice)
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Energy Efficiency Comparison

Power usage per site (Collide - 1920x2048 lattice)
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E. Calore (INFN of Ferrara)

Thanks for Your attention
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