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The D2Q37 Lattice Boltzmann Model
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations

1chemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.
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Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation to exploit a large fraction of available peak
performance.
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D2Q37: propagation scheme

require to access neighbours cells at distance 1,2, and 3,

generate memory-accesses with sparse addressing patterns.
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D2Q37: boundary-conditions

we simulate a 2D lattice with
period-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

I to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.
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D2Q37 collision

collision is computed at each lattice-cell

computational intensive: for the D2Q37 model requires ≈ 7600 DP
operations

completely local: arithmetic operations require only the populations
associate to the site
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Code implementations
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Memory layout for LB : AoS vs SoA
lattice stored as AoS:
typedef struct {

double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice2D [SIZEX∗SIZEY ] ;

lattice stored as SoA:
typedef struct {

double p1 [SIZEX∗SIZEY ] ; / / popu la t ion 1 ar ray
double p2 [SIZEX∗SIZEY ] ; / / popu la t ion 2 ar ray
. . .
double p37 [SIZEX∗SIZEY ] ; / / popu la t ion 37 ar ray

} pop_t ;

pop_t lattice2D ;

AoS suitable for CPU: improves cache-locality for computing collision

SoA suitable for GPU: improves data coalescing
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Lattice memory allocation

lattice is allocated in column-major order

on GPU we allocated two copies of the
lattice:
each step reads from prv and write onto nxt

a lattice of size Lx × Ly is allocated as a grid
of (3 + Lx + 3)× (16 + Ly + 16) sites:

I make uniform computation of
propagate also for sites close to
borders

I along y -direction the size is warp- (32)
and cache-aligned (128B)
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GPU Grid Layouts
For all GPU kernels blocks/work-group/gangs are configured as 1D array of
threads/work-items/vectors, each processing one lattice site.

Example of a physical lattice of 11 × 16 cells.
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Towards an hardware independent code

OpenCL

I Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

I Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

I Apparently NVIDIA do not support it anymore

OpenACC

I Directive based programming standard for heterogeneous parallel
computing

I Developed by Cray, CAPS, Nvidia and PGI
I At the moment it addresses only NVIDIA GPUs and some AMD

GPUs

Independence may have costs in terms of complexity and performance
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OpenCL/“CUDA” example

Propagate device function:

__kernel void propagate (__global const data_t∗ prv , __global data_t∗ nxt ) {

int ix , / / Work−i tem index along the X dimension .
iy , / / Work−i tem index along the Y dimension .
site_i ; / / Index o f cu r ren t s i t e .

/ / Sets the work−i tem ind i ces (Y i s used as the f a s t e s t dimension ) .
ix = (int ) get_global_id ( 1 ) ;
iy = (int ) get_global_id ( 0 ) ;

site_i = (HX+3+ix)∗NY + (HY+iy ) ;

nxt [ site_i ] = prv [ site_i − 3∗NY + 1 ] ;
nxt [ NX∗NY + site_i ] = prv [ NX∗NY + site_i − 3∗NY ] ;
nxt [ 2∗NX∗NY + site_i ] = prv [ 2∗NX∗NY + site_i − 3∗NY − 1 ] ;
nxt [ 3∗NX∗NY + site_i ] = prv [ 3∗NX∗NY + site_i − 2∗NY + 2 ] ;
nxt [ 4∗NX∗NY + site_i ] = prv [ 4∗NX∗NY + site_i − 2∗NY + 1 ] ;
nxt [ 5∗NX∗NY + site_i ] = prv [ 5∗NX∗NY + site_i − 2∗NY ] ;
nxt [ 6∗NX∗NY + site_i ] = prv [ 6∗NX∗NY + site_i − 2∗NY − 1 ] ;

. . .
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OpenACC example

Propagate function:

inline void propagate (const data_t∗ restrict prv , data_t∗ restrict nxt ) {

int ix , iy , site_i ;

#pragma acc kernels present (prv ) present (nxt )
#pragma acc loop gang independent
for ( ix=HX ; ix < (HX+SIZEX ) ; ix++) {

#pragma acc loop vector independent
for ( iy=HY ; iy<(HY+SIZEY ) ; iy++) {

site_i = (ix∗NY ) + iy ;

nxt [ site_i ] = prv [ site_i − 3∗NY + 1 ] ;
nxt [ NX∗NY + site_i ] = prv [ NX∗NY + site_i − 3∗NY ] ;
nxt [ 2∗NX∗NY + site_i ] = prv [ 2∗NX∗NY + site_i − 3∗NY − 1 ] ;
nxt [ 3∗NX∗NY + site_i ] = prv [ 3∗NX∗NY + site_i − 2∗NY + 2 ] ;
nxt [ 4∗NX∗NY + site_i ] = prv [ 4∗NX∗NY + site_i − 2∗NY + 1 ] ;
nxt [ 5∗NX∗NY + site_i ] = prv [ 5∗NX∗NY + site_i − 2∗NY ] ;
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. . .
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Code implementations
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Used processors/accelerators (Eurora)

2 x Intel Xeon Processor E5-2658 2.10 GHz (8 core)

2 x Intel Xeon Processor E5-2687W 3.10 GHz (8 core)

2 x NVIDIA Tesla K20s (Kepler cc 3.5)

2 x Intel Xeon-Phi 5120D 1.053GHz
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Run Time Comparison
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Energy Efficiency Comparison

 0

 5

 10

 15

 20

 25

 30

MIC GPU CPU2 CPU3

[µ
J
] 

p
e

r 
s
it
e

Power usage per site (Propagate - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 18 / 20



Energy Efficiency Comparison

 0

 5

 10

 15

 20

 25

 30

MIC GPU CPU2 CPU3

[µ
J
] 

p
e

r 
s
it
e

Power usage per site (Collide - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 19 / 20



Thanks for Your attention
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