CUDA, OpenCL and OpenACC experiences for
Lattice Boltzmann simulations

Enrico Calore, Sebastiano Fabio Schifano, Raffaele Tripiccione
University of Ferrara and INFN-Ferrara

SUMA meeting
April 1, 2013
Ferrara, ITALIA

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 1/20

The D2Q37 Lattice Boltzmann Model

@ Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

@ simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

@ a set of virtual particles called populations arranged at edges of a
discrete and regular grid

@ interacting by propagation and collision reproduce — after appropriate
averaging — the dynamics of fluids

@ D2Q37 is a D2 model with 37 components of velocity (populations)

@ suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion ' effects

@ correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = pT) equations

Tchemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.
E. Calore (INFN of Ferrara) Ferrara, April 1, 2013 2/20

Computational Scheme of LBM

foreach tine-step e 5 5 A el
foreach lattice—point
peopesace(); R e 5 e A
o 0 0 5 A A
foreach lattice—point

collide); e e A A
e i 5 5 e e
endfor S EE S50

Embarassing parallelism

All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge

Design an efficient implementation to exploit a large fraction of available peak
performance.

v

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 3/20

D2Q37: propagation scheme

@ require to access neighbours cells at distance 1,2, and 3,

@ generate memory-accesses with sparse addressing patterns.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 4/20

D2Q37: boundary-conditions

NY-1
. . . NY-2|
@ we simulate a 2D lattice with NY-3

period-boundaries along x-direction

@ at the top and the bottom boundary
conditions are enforced:

» to adjust some values at sites
y=0...2andy=N,-3...N, — 1

» e.g. set vertical velocity to zero 2 _

-

This step (bc) is computed before the collision step.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 5/20

D2Q37 collision

@ collision is computed at each lattice-cell

@ computational intensive: for the D2Q37 model requires ~ 7600 DP
operations

@ completely local: arithmetic operations require only the populations
associate to the site

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 6/20

Code implementations

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 7120

Memory layout for LB : AoS vs SoA

@ lattice stored as AoS:

typedef struct {
double pl; // population 1
double p2; // population 2

double p37; // population 37
} pop_t;

pop_t lattice2D[SIZEX*SIZEY];

@ lattice stored as SoA:

typedef struct {
double pl[SIZEX*SIZEY]; // population 1 array

double p2[SIZEX*SIZEY]; // population 2 array

double p37[SIZEX*SIZEY]; // population 37 array
} pop_t;

pop_t lattice2D;

@ AoS suitable for CPU: improves cache-locality for computing collision

@ SoA suitable for GPU: improves data coalescing

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM

Ferrara, April 1, 2013

8/20

Lattice memory allocation

@ lattice is allocated in column-major order

@ on GPU we allocated two copies of the
lattice:
each step reads from prv and write onto nxt

NY

@ a lattice of size Ly x L, is allocated as a grid
of (3+ Lx+3) x (16 + L, + 16) sites:

» make uniform computation of
propagate also for sites close to
borders

» along y-direction the size is warp- (32)
and cache-aligned (128B)

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM

Ly

HY|

HY

T

THX

Ferrara, April 1, 2013

9/20

GPU Grid Layouts

threads/work-items/vectors, each processing one lattice site.

For all GPU kernels blocks/work-group/gangs are configured as 1D array of J

NY]

Example of a physical lattice of 11 x 16 cells.

00000 OOPONIOGONOOLOSSS
00000 OOPONOONOOOLOS
000000 OPOOGONOGONOS
00000000 OONOPONNSS
00000 OPOPOOGONOGONGS
000000 OPOOGONOONSS
(A A R R R R R R RN N R RN
[E X R R R R R R RN N NN NN]
(A A R R R R R R NN NRE RN
I A AR R R R R R RN NRE RN
I ZA AR R R R R R RN R NN

'HX‘

LX

=1
HX

E. Calore (INFN of Ferrara)

NX

CUDA, OpenCL and OpenACC for LBM

Ferrara, April 1, 2013

10/20

Towards an hardware independent code

@ OpenCL

» Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

» Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

» Apparently NVIDIA do not support it anymore

@ OpenACC

» Directive based programming standard for heterogeneous parallel
computing

» Developed by Cray, CAPS, Nvidia and PGl

» At the moment it addresses only NVIDIA GPUs and some AMD

GPUs

E. Calore (INFN of Ferrara) Ferrara, April 1, 2013 11/20

Towards an hardware independent code

@ OpenCL

» Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

» Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

» Apparently NVIDIA do not support it anymore

@ OpenACC

» Directive based programming standard for heterogeneous parallel
computing

» Developed by Cray, CAPS, Nvidia and PGl

» At the moment it addresses only NVIDIA GPUs and some AMD

GPUs

Independence may have costs in terms of complexity and performance J

E. Calore (INFN of Ferrara) Ferrara, April 1, 2013 11/20

OpenCL/“CUDA” example

Propagate device function:

__kernel void propagate(__global const data t* prv, _ global data tx nxt) {

int ix,
iy,
site i;

// Work—item index along the X dimension.
/" Work—item index along the Y dimension.
/! Index of current site.

// Sets the work—item

indices

(Y is used as the fastest dimension).

NX*xNY
2xNX+NY
3k NX*+NY
4% NX+NY
5%NX*NY

ix = (int) get_global id(1);

iy = (int) get_global_id(0);
site_i = (HX+3+ix)*NY + (HY+iy);
nxt [site_i] = prv[
nxt [NX#NY + site_i] = prv|
nxt[24NX#NY + site i] = prv|
nxt[3#NX#NY + site i] = prv|
nxt|[4*NX#NY + site i] = prv|
nxt[5*«NX*NY + site_i] = prv|
nxt|[B6x«NX+NY + site_i] = prv|

B6+NX*NY

site_i
site_i
site_i
site_i
site_i
site_i
site_i

3*NY
3*NY
3*NY
2%NY
2%NY
2%NY
2%NY

E. Calore (INFN of Ferrara)

CUDA, OpenCL and OpenACC for LBM

Ferrara, April 1, 2013

12/20

OpenACC example

Propagate function:

inline void propagate(const data t* restrict prv, data t* restrict nxt) {

int ix, iy, site_i;

#pragma acc kernels present(prv) present(nxt)
#pragma acc loop gang independent
for (ix=HX; ix < (HX+SIZEX); ix++) {
#pragma acc loop vector independent
for (iy=HY; iy<(HY+SIZEY); iy++) {

site_i = (ixxNY) + iy;

nxt [site_i] = prv[site_i — 3#NY + 1];
nxt [NX*NY + site i] = prv[NX*#NY + site i — 3xNY 1;
nxt|[24«NX#NY + site i] = prv[2#NX#NY + site i — 3xNY — 1];
nxt|[3#NX#NY + site i] = prv[3#NX#NY + site i — 2xNY + 2];
nxt|[44«NX+«NY + site i] = prv[4#NX#«NY + site i — 2xNY + 1];
nxt[5*%NX#NY + site_i] = prv[5#NX*NY + site i — 2xNY 1;
nxt[6#«NX+xNY + site_i] = prv[6xNX*«NY + site i — 2xNY — 1];

Calore (INFN of Ferrara) CUDA, OpenCL and

Ferrara, April 1, 2013 13/20

Code implementations

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 14/20

Used processors/accelerators (Eurora)

. 2 x Intel Xeon Processor E5-2658 2.10 GHz (8 core)

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 15/20

Run Time Comparison

Run time (Propagate - 1920x2048 lattice)

600
C——
C Opt. mommm
500 - CUDA memmm
OpenCL mwwm—
OpenACC momom
c
S 400
®
g
o 300
o
)
@
£ 200
100

o
=
@)

GPU CPU2 CPU3

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 16/20

Run Time Comparison

Run time (Collide - 1920x2048 lattice)

600
C——3
C Opt. mommm
500 - CUDA memmm
OpenCL mwwm—
OpenACC momom
c
S 400
®
g
o 300
o
)
@
£ 200
100
0 E N lll

MIC GPU CPU2 CPU3

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 17/20

Energy Efficiency Comparison

Power usage per site (Propagate - 1920x2048 lattice)

30
C ——
C Opt. oo
o5 | CUDA memmm
OpenCL mwm—
OpenACC momom
20
2
®
2 15
q
=
10
0 |]
MIC GPU CPU2 CPU3

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 18/20

Energy Efficiency Comparison

Power usage per site (Collide - 1920x2048 lattice)

30
C ——
C Opt. oosseeem
o5 | CUDA memmm
OpenCL mwm—
OpenACC momom
20
2
®
2 15
q
=
10
5
0
MIC GPU CPU2 CPU3

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 19/20

E. Calore (INFN of Ferrara)

Thanks for Your attention

CUDA, OpenCL and OpenACC for LBM

