
CUDA, OpenCL and OpenACC experiences for
Lattice Boltzmann simulations

Enrico Calore, Sebastiano Fabio Schifano, Raffaele Tripiccione

University of Ferrara and INFN-Ferrara

SUMA meeting

April 1, 2013

Ferrara, ITALIA

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 1 / 20

The D2Q37 Lattice Boltzmann Model
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT) equations

1chemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 2 / 20

Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate () ;

endfor

foreach lattice−point
collide () ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation to exploit a large fraction of available peak
performance.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 3 / 20

D2Q37: propagation scheme

require to access neighbours cells at distance 1,2, and 3,

generate memory-accesses with sparse addressing patterns.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 4 / 20

D2Q37: boundary-conditions

we simulate a 2D lattice with
period-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

I to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 5 / 20

D2Q37 collision

collision is computed at each lattice-cell

computational intensive: for the D2Q37 model requires ≈ 7600 DP
operations

completely local: arithmetic operations require only the populations
associate to the site

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 6 / 20

Code implementations

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 7 / 20

Memory layout for LB : AoS vs SoA
lattice stored as AoS:
typedef struct {

double p1 ; / / popu la t ion 1
double p2 ; / / popu la t ion 2
. . .
double p37 ; / / popu la t ion 37

} pop_t ;

pop_t lattice2D [SIZEX∗SIZEY] ;

lattice stored as SoA:
typedef struct {

double p1 [SIZEX∗SIZEY] ; / / popu la t ion 1 ar ray
double p2 [SIZEX∗SIZEY] ; / / popu la t ion 2 ar ray
. . .
double p37 [SIZEX∗SIZEY] ; / / popu la t ion 37 ar ray

} pop_t ;

pop_t lattice2D ;

AoS suitable for CPU: improves cache-locality for computing collision

SoA suitable for GPU: improves data coalescing

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 8 / 20

Lattice memory allocation

lattice is allocated in column-major order

on GPU we allocated two copies of the
lattice:
each step reads from prv and write onto nxt

a lattice of size Lx × Ly is allocated as a grid
of (3 + Lx + 3)× (16 + Ly + 16) sites:

I make uniform computation of
propagate also for sites close to
borders

I along y -direction the size is warp- (32)
and cache-aligned (128B)

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 9 / 20

GPU Grid Layouts
For all GPU kernels blocks/work-group/gangs are configured as 1D array of
threads/work-items/vectors, each processing one lattice site.

Example of a physical lattice of 11 × 16 cells.
E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 10 / 20

Towards an hardware independent code

OpenCL

I Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

I Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

I Apparently NVIDIA do not support it anymore

OpenACC

I Directive based programming standard for heterogeneous parallel
computing

I Developed by Cray, CAPS, Nvidia and PGI
I At the moment it addresses only NVIDIA GPUs and some AMD

GPUs

Independence may have costs in terms of complexity and performance

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 11 / 20

Towards an hardware independent code

OpenCL

I Framework for writing programs that execute across heterogeneous
platforms (CPUs, GPUs, MICs, FPGAs, etc.)

I Open standard developed by the not-for-profit Khronos group,
supported by Apple, Intel, AMD, (NVIDIA), etc.

I Apparently NVIDIA do not support it anymore

OpenACC

I Directive based programming standard for heterogeneous parallel
computing

I Developed by Cray, CAPS, Nvidia and PGI
I At the moment it addresses only NVIDIA GPUs and some AMD

GPUs

Independence may have costs in terms of complexity and performance

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 11 / 20

OpenCL/“CUDA” example

Propagate device function:

__kernel void propagate (__global const data_t∗ prv , __global data_t∗ nxt) {

int ix , / / Work−i tem index along the X dimension .
iy , / / Work−i tem index along the Y dimension .
site_i ; / / Index o f cu r ren t s i t e .

/ / Sets the work−i tem ind i ces (Y i s used as the f a s t e s t dimension) .
ix = (int) get_global_id (1) ;
iy = (int) get_global_id (0) ;

site_i = (HX+3+ix)∗NY + (HY+iy) ;

nxt [site_i] = prv [site_i − 3∗NY + 1] ;
nxt [NX∗NY + site_i] = prv [NX∗NY + site_i − 3∗NY] ;
nxt [2∗NX∗NY + site_i] = prv [2∗NX∗NY + site_i − 3∗NY − 1] ;
nxt [3∗NX∗NY + site_i] = prv [3∗NX∗NY + site_i − 2∗NY + 2] ;
nxt [4∗NX∗NY + site_i] = prv [4∗NX∗NY + site_i − 2∗NY + 1] ;
nxt [5∗NX∗NY + site_i] = prv [5∗NX∗NY + site_i − 2∗NY] ;
nxt [6∗NX∗NY + site_i] = prv [6∗NX∗NY + site_i − 2∗NY − 1] ;

. . .

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 12 / 20

OpenACC example

Propagate function:

inline void propagate (const data_t∗ restrict prv , data_t∗ restrict nxt) {

int ix , iy , site_i ;

#pragma acc kernels present (prv) present (nxt)
#pragma acc loop gang independent
for (ix=HX ; ix < (HX+SIZEX) ; ix++) {

#pragma acc loop vector independent
for (iy=HY ; iy<(HY+SIZEY) ; iy++) {

site_i = (ix∗NY) + iy ;

nxt [site_i] = prv [site_i − 3∗NY + 1] ;
nxt [NX∗NY + site_i] = prv [NX∗NY + site_i − 3∗NY] ;
nxt [2∗NX∗NY + site_i] = prv [2∗NX∗NY + site_i − 3∗NY − 1] ;
nxt [3∗NX∗NY + site_i] = prv [3∗NX∗NY + site_i − 2∗NY + 2] ;
nxt [4∗NX∗NY + site_i] = prv [4∗NX∗NY + site_i − 2∗NY + 1] ;
nxt [5∗NX∗NY + site_i] = prv [5∗NX∗NY + site_i − 2∗NY] ;
nxt [6∗NX∗NY + site_i] = prv [6∗NX∗NY + site_i − 2∗NY − 1] ;

. . .

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 13 / 20

Code implementations

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 14 / 20

Used processors/accelerators (Eurora)

2 x Intel Xeon Processor E5-2658 2.10 GHz (8 core)

2 x Intel Xeon Processor E5-2687W 3.10 GHz (8 core)

2 x NVIDIA Tesla K20s (Kepler cc 3.5)

2 x Intel Xeon-Phi 5120D 1.053GHz

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 15 / 20

Run Time Comparison

 0

 100

 200

 300

 400

 500

 600

MIC GPU CPU2 CPU3

[m
s
e

c
]

p
e

r
it
e

ra
ti
o

n

Run time (Propagate - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 16 / 20

Run Time Comparison

 0

 100

 200

 300

 400

 500

 600

MIC GPU CPU2 CPU3

[m
s
e

c
]

p
e

r
it
e

ra
ti
o

n

Run time (Collide - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 17 / 20

Energy Efficiency Comparison

 0

 5

 10

 15

 20

 25

 30

MIC GPU CPU2 CPU3

[µ
J
]

p
e

r
s
it
e

Power usage per site (Propagate - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 18 / 20

Energy Efficiency Comparison

 0

 5

 10

 15

 20

 25

 30

MIC GPU CPU2 CPU3

[µ
J
]

p
e

r
s
it
e

Power usage per site (Collide - 1920x2048 lattice)

C
C Opt.
CUDA

OpenCL
OpenACC

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 19 / 20

Thanks for Your attention

E. Calore (INFN of Ferrara) CUDA, OpenCL and OpenACC for LBM Ferrara, April 1, 2013 20 / 20

