System size dependence of the log-periodic oscillations of transverse momentum spectra

M. Rybczyński¹, Z. Włodarczyk¹ and G. Wilk² ¹Institute of Physics, Jan Kochanowski University, Kielce ²National Centre for Nuclear Research, Warsaw

Statistical description

For some time now it has been popular to fit the different kinds of transverse momentum spectra measured in multiparticle production processes to of a Tsallis formula.

Statistical description

For some time now it has been popular to fit the different kinds of transverse momentum spectra measured in multiparticle production processes to of a Tsallis formula.

It can be written in one of two recognized forms: either in **original Tsallis one** (with two parameters: q and T)

$$f(p_T) = C \cdot \left[1 - (1 - q)\frac{p_T}{T}\right]^{\frac{1}{1 - q}}$$
(1)

Statistical description

For some time now it has been popular to fit the different kinds of transverse momentum spectra measured in multiparticle production processes to of a Tsallis formula.

It can be written in one of two recognized forms: either in **original Tsallis one** (with two parameters: q and T)

$$f(p_T) = C \cdot \left[1 - (1 - q)\frac{p_T}{T}\right]^{\frac{1}{1 - q}}$$
(1)

or, in the so called "QCD inspired" Hagedorn form (with parameters: m and T)

$$h(p_T) = C \cdot \left(1 + \frac{p_T}{mT}\right)^{-m}$$
(2)
$$m = \frac{1}{q-1}$$

p_T distributions in p+p interactions

Data from:

V. Khachatryan et al. (CMS Collaboration), JHEP 02 (2010) 041 and JHEP 08 (2011) 086; Phys. Rev. Lett. 105 (2010) 022002

p_T distributions in p+p interactions

 $R(p_T) = a + b \cos[c \cdot \ln(p_T + d) + f]$ (3)

data/fit ratio is not flat but shows some kind of clearly visible oscillations

Details in: G. Wilk and Z. Wlodarczyk, arXiv:1403.3508 [hep-ph]

If some function O(x) is scale invariant, i.e.:

 $O(\lambda x) = \mu O(x)$

then it must have a power law behavior:

$$O(x) = Cx^{-m}$$
 with $m = -\frac{\ln\mu}{\ln\lambda}$

If some function O(x) is scale invariant, i.e.:

 $O(\lambda x) = \mu O(x)$

then it must have a power law behavior:

$$O(x) = Cx^{-m}$$
 with $m = -\frac{\ln\mu}{\ln\lambda}$

Because one can write:

$$\mu\lambda^m = 1 = \exp(i2\pi k) \qquad k \in \mathbb{Z}$$

then, in general:

$$m = -\frac{\ln\mu}{\ln\lambda} + i\frac{2\pi k}{\ln\lambda}$$

If some function O(x) is scale invariant, i.e.:

 $O(\lambda x) = \mu O(x)$

then it must have a power law behavior:

$$O(x) = Cx^{-m}$$
 with $m = -\frac{\ln\mu}{\ln\lambda}$

Because one can write:

$$\mu\lambda^m = 1 = \exp(i2\pi k) \qquad k \in \mathbb{Z}$$

then, in general:

$$m = -\frac{\ln\mu}{\ln\lambda} + i\frac{2\pi k}{\ln\lambda}$$

The evolution of the differential $df(p_T)/dp_T$ of a Tsallis distribution $f(p_T)$ with power index *n* performed for finite differences $\delta p_T = \alpha(nT + p_T)$ results in the following scale invariant relation:

$$g[(1 + \alpha)x] = (1 - \alpha n)g(x)$$
 $x = 1 + \frac{p_T}{nT}$

In general, one can write $h(p_T) = C \cdot \left(1 + \frac{p_T}{mT}\right)^{-m}$ in the form:

$$g(x) = x^{-m_k}$$
 $m_k = -\frac{\ln(1-\alpha n)}{\ln(1+\alpha)} + ik\frac{2\pi}{\ln(1+\alpha)}$

In general, one can write $h(p_T) = C \cdot \left(1 + \frac{p_T}{mT}\right)^{-m}$ in the form: $g(x) = x^{-m_k}$ $m_k = -\frac{\ln(1-\alpha n)}{\ln(1+\alpha)} + ik\frac{2\pi}{\ln(1+\alpha)}$

or more generally:

$$g(x) = \sum_{k=0}^{\infty} w_k \cdot \operatorname{Re}(x^{-m_k}) = x^{-\operatorname{Re}(m_k)} \sum_{k=0}^{\infty} w_k \cdot \cos[\operatorname{Im}(m_k)\ln(x)]$$

In general, one can write $h(p_T) = C \cdot \left(1 + \frac{p_T}{mT}\right)^{-m}$ in the form:

$$g(x) = x^{-m_k}$$
 $m_k = -\frac{\ln(1-\alpha n)}{\ln(1+\alpha)} + ik\frac{2\pi}{\ln(1+\alpha)}$

or more generally:

$$g(x) = \sum_{k=0}^{\infty} w_k \cdot \operatorname{Re}(x^{-m_k}) = x^{-\operatorname{Re}(m_k)} \sum_{k=0}^{\infty} w_k \cdot \cos[\operatorname{Im}(m_k)\ln(x)]$$

Since we do not know *a priori* the details of dynamics of processes under consideration (i.e. we do not know the weights w_k), in what follows we use only k = 0 and k = 1 terms:

$$g(p_T) \cong \left(1 + \frac{p_T}{nT}\right)^{-m_0} \left\{ w_0 + w_1 \cos\left[\frac{2\pi}{\ln(1+\alpha)} \ln\left(1 + \frac{p_T}{nT}\right)\right] \right\}$$

In general, one can write $h(p_T) = C \cdot \left(1 + \frac{p_T}{mT}\right)^{-m}$ in the form:

$$g(x) = x^{-m_k}$$
 $m_k = -\frac{\ln(1-\alpha n)}{\ln(1+\alpha)} + ik\frac{2\pi}{\ln(1+\alpha)}$

or more generally:

$$g(x) = \sum_{k=0}^{\infty} w_k \cdot \operatorname{Re}(x^{-m_k}) = x^{-\operatorname{Re}(m_k)} \sum_{k=0}^{\infty} w_k \cdot \cos[\operatorname{Im}(m_k)\ln(x)]$$

Since we do not know *a priori* the details of dynamics of processes under consideration (i.e. we do not know the weights w_k), in what follows we use only k = 0 and k = 1 terms:

$$g(p_T) \cong \left(1 + \frac{p_T}{nT}\right)^{-m_0} \left\{ w_0 + w_1 \cos\left[\frac{2\pi}{\ln(1+\alpha)} \ln\left(1 + \frac{p_T}{nT}\right)\right] \right\}$$

The parameters in general modulating factor $R(p_T) = a + b \cos[c \cdot \ln(p_T + d) + f]$ can be indentified as follows:

$$a = w_0 \qquad c = \frac{2\pi}{\ln(1+\alpha)} \qquad d = nT$$

$$b = w_1 \qquad f = -c \cdot \ln(nT)$$

S. Chatrchyan et al. (CMS Collaboration), EPJ C72 (2012) 1945

Parameters – centrality dependence

 $R(p_T) = a + b \cos[c \cdot \ln(p_T + d) + f]$

Parameters – centrality dependence

 $R(p_T) = a + b \cos[c \cdot \ln(p_T + d) + f]$

Parameters – centrality dependence

 $R(p_T) = a + b \cos[c \cdot \ln(p_T + d) + f]$

Two component fit

T.S. Biro, G.G. Barnafoldi, P. Van and K. Urmossy, arXiv:1404.1256 [hep-ph]

Ratios

Data from:

S. Chatrchyan et al. (CMS Collaboration), EPJ C72 (2012) 1945

Recently the inclusive transverse momentum distributions of primary charged particles are measured for different centralities in Pb+Pb collisions at sqrt(s)=2.76 TeV/nucleon.

Recently the inclusive transverse momentum distributions of primary charged particles are measured for different centralities in Pb+Pb collisions at sqrt(s)=2.76 TeV/nucleon.

Data presented in terms of nuclear modification factor show strong suppression in central collisions for p_T around 6-7 GeV/c

Recently the inclusive transverse momentum distributions of primary charged particles are measured for different centralities in Pb+Pb collisions at sqrt(s)=2.76 TeV/nucleon.

Data presented in terms of nuclear modification factor show strong suppression in central collisions for p_T around 6-7 GeV/c

The dependence of the shape of the p_T spectra of produced charged hadrons on the size of a colliding system has been discussed using Tsallis distribution as a reference spectrum.

Recently the inclusive transverse momentum distributions of primary charged particles are measured for different centralities in Pb+Pb collisions at sqrt(s)=2.76 TeV/nucleon.

Data presented in terms of nuclear modification factor show strong suppression in central collisions for p_T around 6-7 GeV/c

The dependence of the shape of the p_T spectra of produced charged hadrons on the size of a colliding system has been discussed using Tsallis distribution as a reference spectrum.

It is remarkable that the characteristic suppression is observed also in p+p collisions. Transverse momentum distributions in p+p interactions, for large p_T exhibit roughly a power-like behavior decorated with some log-periodic oscillations..

Recently the inclusive transverse momentum distributions of primary charged particles are measured for different centralities in Pb+Pb collisions at sqrt(s)=2.76 TeV/nucleon.

Data presented in terms of nuclear modification factor show strong suppression in central collisions for p_T around 6-7 GeV/c

The dependence of the shape of the p_T spectra of produced charged hadrons on the size of a colliding system has been discussed using Tsallis distribution as a reference spectrum.

It is remarkable that the characteristic suppression is observed also in p+p collisions. Transverse momentum distributions in p+p interactions, for large p_T exhibit roughly a power-like behavior decorated with some log-periodic oscillations..

In the case of Pb+Pb collisions the amplitude of this oscillations increases linearly as a function of N_{coll} / N_{par} , and for the most central collisions we observe a spectacular oscillations.

Additional slides