

Review of physics results using jet substructure techniques in LHC Run1

Matteo Negrini INFN Bologna

on behalf of the ATLAS and CMS collaborations

XLIV International Symposium on Multiparticle Dynamics Bologna – 8-12/09/2014

Motivation

- Search for new physics at the TeV scale
- Decay products of massive objects (W,Z,t,H) with large Lorentz boost $(p_T >>m)$ tend to be collimated and can partially overlap in the reconstruction
- Standard reconstruction techniques employing resolved objects become inefficient
- Decay products of boosted massive objects can be contained in a single large-R jet

- Jets with large R receive significant contribution from pile-up
- Event reconstruction and selection based on jet substructure analysis
 - jet grooming jet substructure observables taggers

Jet grooming

Techniques used to mitigate the effect of pile-up (typically soft radiation spatially separated from the main energy deposits)

Mass-drop filtering: sub-jets with reduced R and significantly smaller mass are constructed. Residual energy deposits are rejected.

Trimming: sub-jets of smaller R are constructed. Sub-jets with p_{τ} smaller than a fixed fraction of the p_{τ} of the original jet are removed.

Pruning: jet reconstruction reapplied to all jet constituents. At each step of the reconstruction the constituents of small p_T and spatially separated are removed.

M. Negrini – ISMD 2014

Jet substructure observables

Examples of observables applied in the analysis:

- Mass: invariant mass computed from jet constituents
- Splitting scales ($\sqrt{d_{ii}}$): k_{T} distance between the two proto-jets in the last step of the jet clustering
- Momentum balance $(\sqrt{y_f})$: ratio between the splitting scale and the jet mass
- Mass-drop (μ_{12}) : fraction of mass of the most massive proto-jets
- **N-subjettiness** (τ_N) : quantifies to what degree the substructure resembles the one of a jet with N or less sub-jets. Ratios $(\tau_{ii} = \tau_i / \tau_i)$ are commonly used

• Taggers: techniques testing specific scenarios of interest

Improvement in jet mass resolution after grooming (trimming, R_{sub} =0.3, f_{cut} =5%)

Jet mass distribution shown for **di-jet** and $Z \rightarrow qq$ events

M. Negrini – ISMD 2014

Boosted boson and top taggers

- INFN Istituto Nazionale di Fisica Nucleare
- Several tagging techniques have been developed for the discrimination of boosted massive objects jets from q/g jets
- Taggers check the compatibility with an assumed scenario
- Different performance (especially in different p_{T} regimes)

Selection of results

- High- $p_T V \rightarrow q\overline{q}$ (ATLAS)
- VV resonance search \rightarrow di-jets (CMS)
- VV resonance search → lepton + jets (ATLAS & CMS)
- W' \rightarrow tb (ATLAS & CMS)
- $t\bar{t}$ resonance search \rightarrow lepton + jets (ATLAS)
- $t\bar{t}$ resonance search \rightarrow full hadronic (CMS)
- tH resonance search (CMS)

High- $p_T V \rightarrow qq - I$

arXiv:1407.0800

- Reconstruct $W, Z \rightarrow q\overline{q}$ in a single R=0.6 anti- k_{τ} jet
- Measure the cross section in the fiducial region: p_{T} >320 GeV, $|\eta|$ <1.9
- W/Z MC (signal): HERWIG+JIMMY
- Multi-jet QCD MC (background): PYTHIA
- tt MC (background): MC@NLO+HERWIG

Alternative generators used for systematics evaluations

- W/Z jets selection based on jet mass (50<m_{jet}<140 GeV) and on topological variables evaluated in the jet centre-of-mass frame, combined in a likelihood discriminant
 - → W/Z jets: back-to-back topology
 - QCD jets: isotropic topology

M. Negrini – ISMD 2014

7

High- $p_T V \rightarrow qq - III$ Effect of grooming

arXiv:1407.0800

Use the selected W/Z event sample to study the effect of trimming, pruning and area subtraction (without specific optimization)

- Grooming techniques reduce the impact of pile-up on the measurement
- Shoulder structure in the background still present after grooming
- Number of selected jets reduced by ~30% after grooming
- Similar statistical significance of W+Z signal

VV, tī resonance searches

- Predicted by several BSM theories
 - VV: Randall-Sundrum / Bulk gravitons, extended gauge models (W' \rightarrow WZ)
 - tt: KK gluons, Z'
- Look for high-p_T large-R jet associated with the hadronic decays $V \rightarrow q\overline{q}$ and $t \rightarrow bW \rightarrow bq\overline{q}$
- Background rejection based on large-R jet substructure and event topology
 - Full-hadronic or lepton+jets
 - b-tagging
- Strategy: bump search

VV, qV resonance search - I di-jet channel

- Events with at least two R=0.8 Cambridge-Aachen jets
- W,Z \rightarrow qq tagging algorithm based on pruning
- Separate sample in one- or two-tagged jets:
 - two tags: G_{RS} , $G_{bulk} \rightarrow WW/ZZ$ (HERWIG++, JHUGEN), W' \rightarrow WZ (PYTHIA)
 - one tag: test excited quark resonances $q^* \rightarrow qZ$, qW (PYTHIA)
- Multi-jet QCD MC (background): HERWIG++ and MADGRAPH
- W/Z jets selection based on pruned jet mass (70<m_{jet}<100 GeV) and on the N-subjettiness ratio τ_{21} (high purity: τ_{21} <0.5, low purity: 0.5< τ_{21} <0.75)

VV, qV resonance search - II di-jet channel

No excess visible on background (smooth function fitted on data)

95% CL exclusion limits

Process	Mass (TeV)
$q^{\star} \rightarrow qW$	3.2
$q^* \rightarrow qZ$	2.9
$W' \rightarrow WZ$	1.7
$G_{RS} \rightarrow WW$	1.2

3

CMS, L = 19.7 fb⁻¹, vs = 8 TeV CMS, L = 19.7 fb⁻¹, \sqrt{s} = 8 TeV do/dm (pb/TeV) 10² d₀/dm (pb/TeV) 10² ▲ High-purity doubly W/Z-tagged data ▲ High-purity singly W/Z-tagged data — Fit - Fit $--G_{RS} \rightarrow WW (1.5 \text{ TeV})$ $q^* \rightarrow qW$ (3.0 TeV) 10 10 10⁻¹ 10⁻¹ 10⁻² 10⁻² 10⁻³ 10⁻³ <u>Data-Fit</u> ^G_{Data} Data-Fit ^GData 2.5 1.5 2.5 3.5 2 1.5 m_{ji} (TeV) m_{ii} (TeV) CMS, L = 19.7 fb⁻¹, \sqrt{s} = 8 TeV CMS, L = 19.7 fb⁻¹, \sqrt{s} = 8 TeV

 $\sigma \times \textbf{B}(\textbf{G}_{\textbf{RS}} \rightarrow \textbf{WW})$ (pb)

10⁻¹

10⁻²

10⁻³

1

VV resonance search - I lepton+jet channel

- Events with one R=0.8 Cambridge-Aachen jet tagged as $W,Z \rightarrow qq$
- Same tagging algorithm used for the di-jet channel
- Presence of leptons / E_{τ}^{miss} in the final state
- Signal MC: G_{hulk} → WW/ZZ (JHUGEN)
- Background MC: W/Z+jets MC (MADGRAPH), tt (POWHEG), diboson (PYTHIA)
- Selection: $p_{\tau}(W,Z)$, τ_{21} and VV spatial separation provide good background discrimination

VV resonance search - II

lepton+jet channel

10⁵

L = 19.7 fb⁻¹ at vs = 8 TeV

W+iets

CMS Data (ev HP)

No excess visible on SM background

Sensitivity of lepton+jet channel to G_{hulk} still limited

L = 19.7 fb⁻¹ at √s = 8 TeV

CMS Data (ee HP

CMS

10

Model-independent interpretation of the result: exclusion limit for generic resonance $X \rightarrow WV, ZV$ with mass M_{x} and width Γ_{x}

ZV resonance search - I di-lepton+jet channel

ATLAS-CONF-2014-039

- Event selection optimized in three different kinematical regimes: low-pT resolved, high-pT resolved, merged (W,Z → qq in C/A R=1.2 jet)
- W,Z \rightarrow qq tagging in the merged regime based on jet splitting/filtering
- Tested models: $G^* \rightarrow ZZ$ (CALCHEP), W' $\rightarrow ZW$ (PYTHIA) (Note: Kaluza-Klein graviton G* was G_{bulk} in CMS notation)
- Background MC: W/Z+jets (SHERPA), tt (MC@NLO), diboson (HERWIG)

ZV resonance search - II di-lepton+jet channel ATLAS-CONF-2014-039

Expected limits for the 3 selections No excess over SM observed Events / GeV [dd] Preliminary ATLAS Data Z+iets s = 8 TeV Expected 95% CL ATLAS Preliminary ZŹ/ZW/WW 10² $\int L dt = 20.3 \text{ fb}^{-1}$ 1 tī+Single Top Sys+Stat Uncertainty G*, m=1400 GeV (ZZ ← s = 8 TeV --- Resolved Low-p_ Meraed Region L dt = 20.3 fb⁻¹ The merged selection $Z \rightarrow ee, \mu\mu$ Channel Resolved High-p, Nominal × 10.0 10 10 drives the limit in the $\sigma(pp \to G^*) \times BR(G^*$ ----- Merged 10-2 Combined high-mass region 10⁻³ 10⁻¹ 95% CL limits 10 Mass (GeV) Data / BG 10⁻² 3 2 G* 740 10⁻³ ٥٥ 2000 1400 1600 1800 1000 1500 2000 2500 400 600 800 1000 1200 500 m_{IIJ} [GeV] W' 1590 m_{G*} [GeV] $\sigma(pp \to G^*) \times BR(G^* \to ZZ) \ [pb]$ $\sigma(pp \rightarrow W') \times BR(W' \rightarrow ZW)$ [pb] Preliminary ATLAS Bulk RS graviton $k/\overline{M}_{Pl} = 1$ ATLAS Preliminarv EGM W', c = 110² 104 s = 8 TeV \s = 8 TeV Bulk RS graviton $k/\overline{M}_{Pl} = 0.5$ Expected 95% CL $L dt = 20.3 \text{ fb}^{-1}$ L dt = 20.3 fb⁻¹ Expected 95% CL Observed 95% CL Observed 95% CL 10 10 $\pm 1 \sigma$ uncertainty $\pm 1 \sigma$ uncertainty $\pm 2 \sigma$ uncertainty $\pm 2 \sigma$ uncertainty 10⁻¹ 10 10⁻² 10-2 10⁻³ 10 600 800 1000 1200 1400 1600 1800 2000 400 600 1200 1400 1600 1800 2000 400 800 1000 m_{G*} [GeV] m_w, [GeV]

M. Negrini – ISMD 2014

W'→tb (qqbb) search

- Top candidate reconstructed in a single large-R jet
- Tagging based on jet substructure (splitting scales and N-subjettiness)
- b-tagging
- Main backgrounds: QCD and tt

tt resonance search - l lepton+jet channel

ATLAS-CONF-2013-052

CMS-PAS-B2G-12-006

CMS analysis:

- Resolved and boosted event selection
- Hadronic top candidate reconstructed in a anti- k_{T} R=1.0 jet
- Tagging based on large-R jet mass and splitting scale
- b-tagging
- Models: Kaluza-Klein gluon, leptophobic Z'
- \sim Main background: SM tt Other: W+jets, single top, QCD

tt resonance search - II lepton+jet channel ATLAS-CONF-2013-052

M. Negrini – ISMD 2014

tt resonance search full-hadronic channel

- Two top candidate reconstructed in C/A R=0.8 jets
- Both jets tagged as top candidates (CMS top tagger: 140<m_{jet}<250 GeV, at least 3 sub-jets, min mass of subjet pairs > 50 GeV)
- b-tagging
- Models: Kaluza-Klein gluon, leptophobic Z'
- Main backgrounds: multi-jet QCD, SM tt

CMS-PAS-B2G-12-005

95% CL limits

	Mass (TeV)
Wide Z'	2.35
Narrow Z'	1.7
g _{κκ}	1.8

ATLAS analysis: JHEP 01, 116 (2013)

tt resonance search

Phys. Rev. Lett. 111, 211804 (2013)

The boosted selection plays the leading role in pushing the $t\bar{t}$ resonances mass limit to higher values

tH resonance search - I

CMS-PAS-B2G-14-002

- Search for tH resonances in full-hadronic final state
- Top-tagging (HEPTopTagger) and Higgs-tagging (sub-jets b-tagging) algorithms applied to C/A R=1.5 jets
- Likelihood discriminator built from scalar sum of transverse momenta of selected objects (H_T) and mass of the two b-tagged sub-jets (m_H)
- Model: pair of vector-like T quarks (MADGRAPH)
- Main background: multi-jet QCD (extracted from data), tt (MADGRAPH)

- QCD background estimated using matrix metod
- Sidebands region obtained inverting the top and Higgs tagging selections
- The two taggers are uncorrelated:

$$\frac{N_D}{N_C} = \frac{N_B}{N_A}$$

tH resonance search - II

CMS-PAS-B2G-14-002

Istituto Nazionale di Fisica Nucleare

H_T and m_H combined in a likelihood discriminator

Assuming BR(T \rightarrow tH)=100% exclude m_T<747 GeV (95% CL)

Derive mass limits also as a function of the T branching ratios

Summary

- Techniques for jet substructure analysis developed by ATLAS and CMS allow to reconstruct hadronic decay of massive objects in the boosted regime
- Successfully applied in several measurements and BSM physics searches
 - Physics results complementary to the ones obtained using resolved reconstruction techniques
 - Boosted analysis push farther the mass limits
- These techniques (and future extensions) are crucial for LHC Run2 physics program
 - Energy and pile-up will increase
 - Techniques still under active developments
 - Fruitful interplay between theorists and experimentalists

BACKUP

M. Negrini – ISMD 2014

High-pT Z → bb - I

- Reconstruct $Z \rightarrow b\overline{b}$ using pair of b-tagged R=0.4 anti-k_T jet ($\Delta R < 1.2$, p_T>200 GeV)
- Measure the cross section in a fiducial region
- Z MC (signal): SHERPA
- Multi-jet QCD MC (main background): from data
- W/Z jets selection based on artificial neural network discriminator ($S_{_{NN}}$) based on topological variables:
 - → η of di-jet system
 - $\Delta \eta$ between the di-jet and the balancing jet

M. Negrini – ISMD 2014

High-pT Z → bb - II

