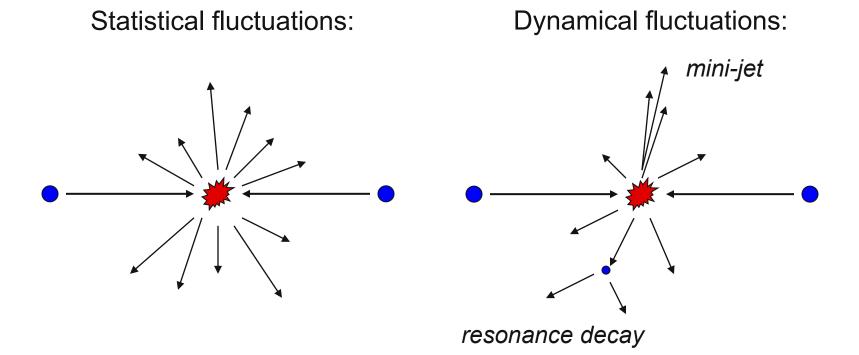


Event-by-event mean p_T fluctuations in pp and Pb–Pb collisions at the LHC

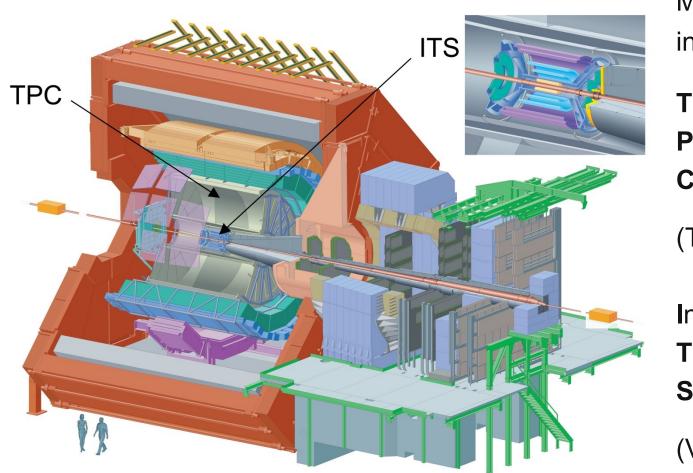
Stefan Heckel on behalf of the ALICE Collaboration

XLIV International Symposium on Multiparticle Dynamics

September 11, 2014



Motivation: pp collisions


Event-by-event fluctuations of the mean transverse momentum

pp collisions also interesting as reference measurement for heavy-ion collisions

ALICE detector setup

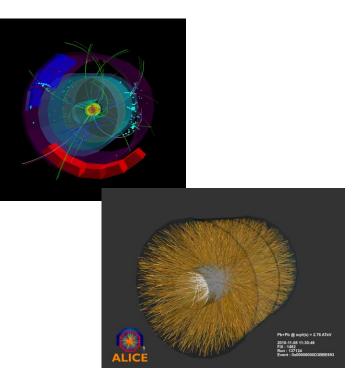
Main detectors used in this analysis: Time Projection Chamber (Tracking, Vertex)

Tracking System (Vertex)

Data sets and acceptance

ALICE

pp collisions:


- $\circ \sqrt{s} = 0.9 \text{ TeV}, 6.9 \text{ M events}$
- \circ \sqrt{s} = 2.76 TeV, 66 M events
- $\circ \sqrt{s}$ = 7 TeV, 290 M events

Pb–Pb collisions:

 $\circ \sqrt{s_{NN}}$ = 2.76 TeV, 19 M events

Acceptance:

Pseudorapidity range: $|\eta| < 0.8$ Transverse momentum range: $0.15 < p_T < 2$ GeV/*c*

Two-particle correlator

The mean of covariances of all particle pairs i and j

$$C = \left\langle \Delta p_{\mathrm{T,i}}, \Delta p_{\mathrm{T,j}} \right\rangle = \frac{1}{\sum_{k=1}^{n_{\mathrm{ev}}} N_{k}^{\mathrm{pairs}}} \cdot \sum_{k=1}^{n_{\mathrm{ev}}} \sum_{i=1}^{N_{k}} \sum_{j=i+1}^{N_{k}} \left(p_{\mathrm{T,i}} - M(p_{\mathrm{T}}) \right) \cdot \left(p_{\mathrm{T,j}} - M(p_{\mathrm{T}}) \right)$$

 $n_{\rm ev}$: Number of events $N_{\rm k}$: Number of particles in event *k* $N_{\rm k}^{\rm pairs} = 0.5 \cdot N_{\rm k} \cdot (N_{\rm k} - 1)$: Number of pairs in event *k* $M(p_{\rm T})$: Mean $p_{\rm T}$ of all tracks in all events

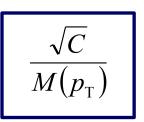
ALICE

Two-particle correlator

The mean of covariances of all particle pairs i and j

$$C = \left\langle \Delta p_{\mathrm{T,i}}, \Delta p_{\mathrm{T,j}} \right\rangle = \frac{1}{\sum_{k=1}^{n_{\mathrm{ev}}} N_{k}^{\mathrm{pairs}}} \cdot \sum_{k=1}^{n_{\mathrm{ev}}} \sum_{i=1}^{N_{k}} \sum_{j=i+1}^{N_{k}} \left(p_{\mathrm{T,i}} - M(p_{\mathrm{T}}) \right) \cdot \left(p_{\mathrm{T,j}} - M(p_{\mathrm{T}}) \right)$$

C = 0 for only statistical fluctuations


 $n_{\rm ev}$: Number of events $N_{\rm k}$: Number of particles in event *k* $N_{\rm k}^{\rm pairs} = 0.5 \cdot N_{\rm k} \cdot (N_{\rm k} - 1)$: Number of pairs in event *k* $M(p_{\rm T})$: Mean $p_{\rm T}$ of all tracks in all events

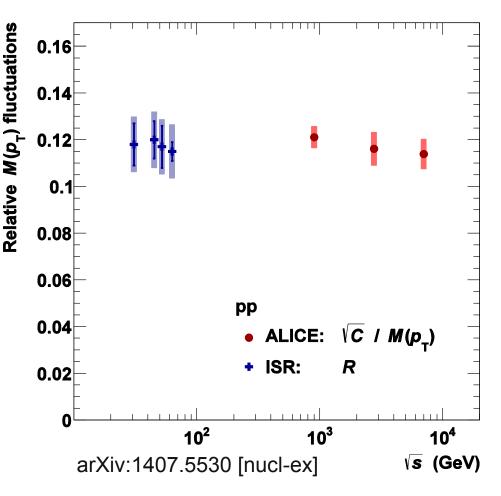
Two-particle correlator

The mean of covariances of all particle pairs i and j

$$C = \left\langle \Delta p_{\mathrm{T,i}}, \Delta p_{\mathrm{T,j}} \right\rangle = \frac{1}{\sum_{k=1}^{n_{\mathrm{ev}}} N_{k}^{\mathrm{pairs}}} \cdot \sum_{k=1}^{n_{\mathrm{ev}}} \sum_{i=1}^{N_{k}} \sum_{j=i+1}^{N_{k}} \left(p_{\mathrm{T,i}} - M(p_{\mathrm{T}}) \right) \cdot \left(p_{\mathrm{T,j}} - M(p_{\mathrm{T}}) \right)$$

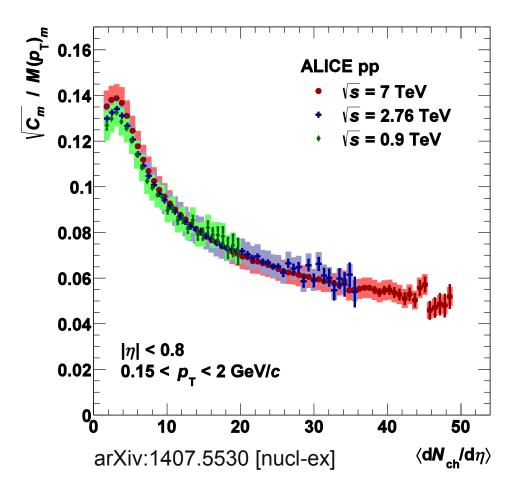
C = 0 for only statistical fluctuations

 $n_{\rm ev}$: Number of events $N_{\rm k}$: Number of particles in event k $N_{\rm k}^{\rm pairs} = 0.5 \cdot N_{\rm k} \cdot (N_{\rm k} - 1)$: Number of pairs in event k $M(p_{\rm T})$: Mean $p_{\rm T}$ of all tracks in all events


Measure fluctuations relative to $M(p_T)$

Results in pp collisions Inclusive results as a function of \sqrt{s}

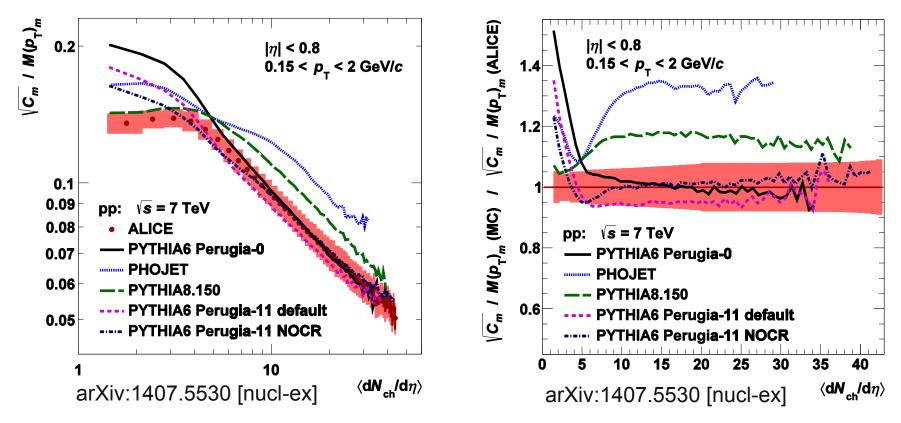
- Significant dynamical fluctuations
- ALICE measures no significant dependence on collision energy
- Comparison to a similar quantity from ISR [1]
- No significant dependence over a large range of collision energies
 - [1] K. Braune *et al.*, Phys.Lett. **B123** (1983) 467


Two-particle correlator As a function of multiplicity

- First measurement of mean p_T fluctuations as a function of multiplicity in pp collisions!
- Differential studies can bring more insight in the origin of the fluctuations
- Effects of multi-parton interactions, color reconnections, ...

Results in pp collisions

As a function of the charged-particle multiplicity density



- Significant dynamical fluctuations
- Strong decrease with multiplicity
- Inclusive value of ≈ 12%
 has underlying structure
- No significant collision energy dependence

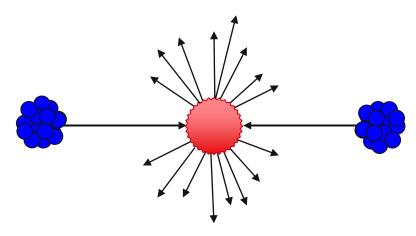
ALICE

Results in pp collisions

Comparison to Monte Carlo generators

For $\langle dN_{ch} / d\eta \rangle > 5$: \circ Reasonable description by most of the generators \circ Color reconnections have no influence on the slope!

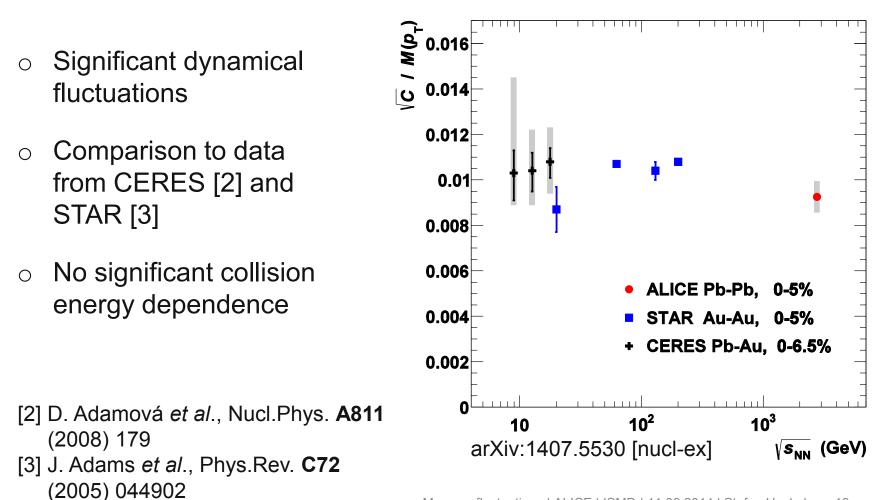
Motivation: From pp to Pb–Pb collisions



Contributions also observed in pp collisions:

pp collisions important as reference measurement!

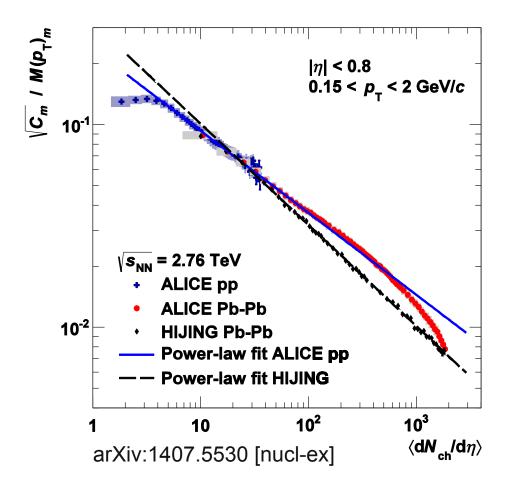
Contributions unique to heavy-ion collisions:


- Thermalization
- Collectivity
- Phase transitions
- Initial state fluctuations

Mean p_T fluctuations | ALICE | ISMD | 11.09.2014 | Stefan Heckel 12

ALICE

Results in Pb–Pb collisions

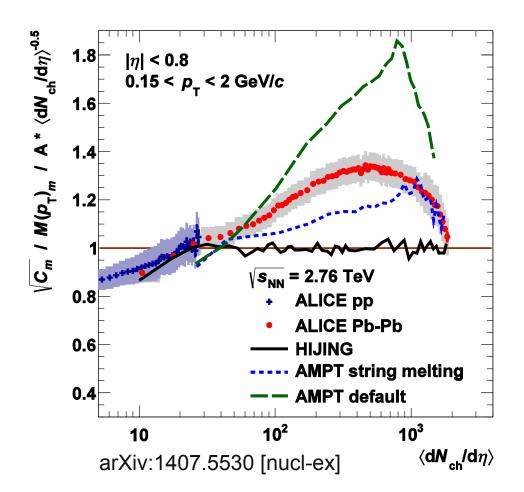

Central A–A collisions as a function of \sqrt{s}

Results in Pb–Pb collisions

Comparison to pp collisions as a function of the multiplicity

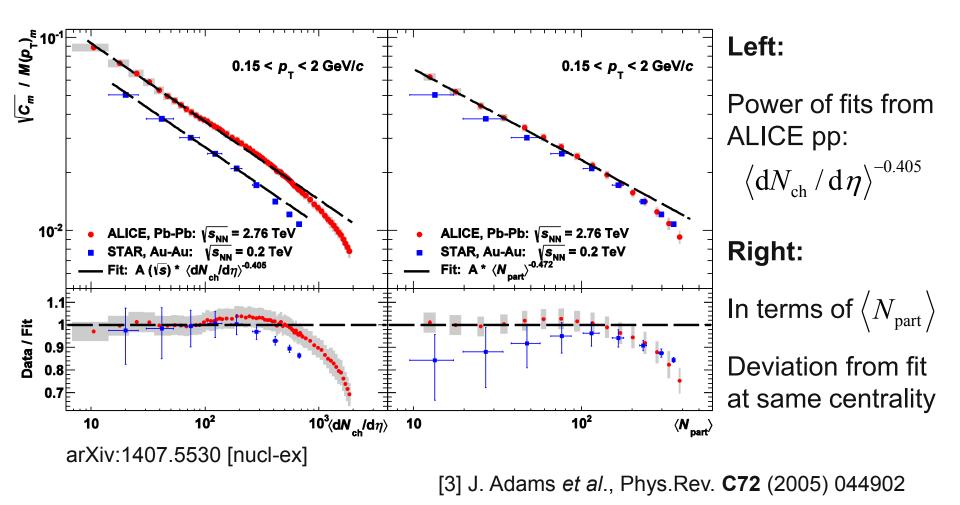
- Peripheral Pb–Pb in agreement with pp baseline: $\infty \left\langle dN_{ch} / d\eta \right\rangle^{b}$ $b = -0.405 \pm 0.002 (\text{stat.}) \pm 0.036 (\text{syst.})$
- Deviation in central Pb–Pb
- Not described by HIJING:

 $b = -0.499 \pm 0.003$ (stat.) ± 0.005 (syst.)


corresponds to simple superposition expectation

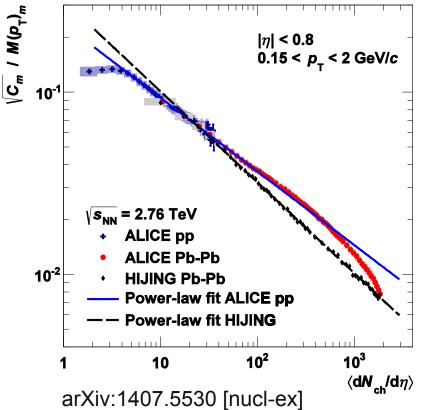
Results in Pb–Pb collisions

Comparison to Monte Carlo generators


- HIJING shows behaviour $\propto \langle dN_{ch} / d\eta \rangle^{-0.5}$ and cannot describe the data
- AMPT (includes collective effects) both versions:
 - Increase above simple superposition expectation
 - Decrease towards central events
 - Fail in terms of absolute values

Results in Pb–Pb collisions

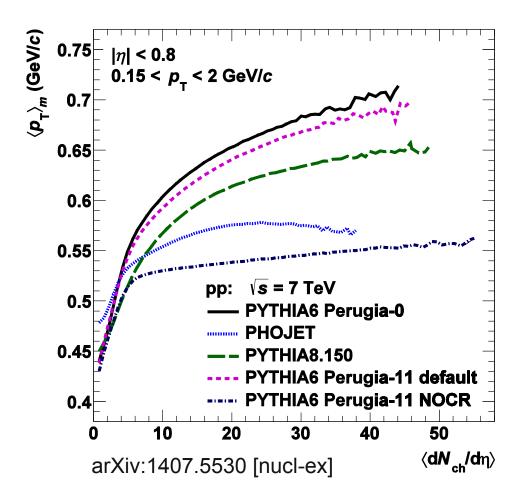
ALICE


Comparison to STAR [3] results in Au–Au collisions

Conclusions

- Significant dynamical fluctuations decreasing with multiplicity observed in pp and Pb–Pb collisions.
- No significant energy dependence found in pp and Pb–Pb collisions.
- Peripheral Pb–Pb agrees with a pp extrapolation, central Pb–Pb deviates significantly.
- Monte Carlo generators describe pp rather well, Pb–Pb is not described by HIJING, but qualitatively by AMPT.

A Large Ion Collider Experiment


BACKUP

Mean p_T fluctuations | ALICE | ISMD | 11.09.2014 | Stefan Heckel 18

Mean p_{T} in pp collisions

From the Monte Carlo event generators

