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Motivation

Bulk observables - mean multiplicity and rapidity densities - control
parameters of the formation and evolution of the collision initial state

Extensively studied in heavy-ion collisions at RHIC
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Constituent Quark Framework

No nucleon participant dependence as
soon as calculated in the constituent
quark framework
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Constituent Quark Framework

No nucleon participant dependence as
soon as calculated in the constituent
quark framework

AA centrality data are similar to PP/PP

NSD measurements
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Constituent Quark Framework

No nucleon participant dependence as
soon as calculated in the constituent
quark framework

AA centrality data are similar to PP/PP

NSD measurements
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Energy Scaling vs. Types of Collisions

v’ e*e (structureless particles) annihilation - the total interaction energy
is deposited in the initial state

v' pp (superposition of three pairs of constituents) collision - only the
energy of the interacting single quark pair is deposited in the initial

state

v' Both muiltiplicity and midrapidity density should be similar in pp at
c.m. energy Vs, and e*e” at c.m. energy vs.,~ Vs, /3
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Energy Scaling vs. Types of Collisions

e*e (structureless particles) annihilation - the total interaction energy
is deposited in the initial state

pp (superposition of three pairs of constituents) collision - only the
energy of the interacting single quark pair is deposited in the initial
state

Both multiplicity and midrapidity density should be similar in pp at
c.m. energy Vs, and e*e” at c.m. energy vs.,~ Vs, /3

Head-on heavy ion collisions: all three quarks participate nearly
simultaneously and deposit their energy coherently into initial state

Both multiplicity and midrapidity density should be similar in pp
at c.m. energy Vs, and head-on AA at c.m. energy Vsy, = Vs, /3

E. Sarkisyan & A. Sakharov (2004) : dissipating energy participants
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Hydrodynamics of Collisions
» Two head-on colliding Lorentz-contracted particles stop within
the overlapped zone

* Formation of fully thermalized initial state at the collision moment
* The decay (expansion) of the initial state is governed by relativistic
hydrodynamics - Landau model (1953)
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Hydrodynamics of Collisions

» Two head-on colliding Lorentz-contracted particles stop within
the overlapped zone

* Formation of fully thermalized initial state at the collision moment
* The decay (expansion) of the initial state is governed by relativistic
hydrodynamics - Landau model (1953)
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Hydrodynamics of Collisions

» Two head-on colliding Lorentz-contracted particles stop within
the overlapped zone
* Formation of fully thermalized initial state at the collision moment

* The decay (expansion) of the initial state is governed by relativistic
hydrodynamics - Landau model (1953)
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« The production of secondaries is defined by the energy deposited
Into the Initial state
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Hydrodynamics & Energy Scaling vs Data

from Landau Hydrodynamics

2N n L NG
0) = 0 R} P2 L =1n >—
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Hydrodynamics & Energy Scaling vs Data

from Landau Hydrodynamics

2N n L NG
0) = 0 - 2L =In-—

Landau Hydrodynamics+
Constituent Quark approach

(0) = p(0)—2Nen [y 41n3
PR = PepiU g INPP In(4m2 /snn)
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Hydrodynamics & Energy Scaling vs Data
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v" Nuclear data both on midrapidity density
and mean multiplicity energy dependence
well reproduced up to top RHIC energy
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Hydrodynamics & Energy Scaling vs Data

from Landau Hydrodynamics

2Nch
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Landau Hydrodynamics+
Constituent Quark approach
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v" Nuclear data both on midrapidity density
and mean multiplicity energy dependence

well reproduced up to top RHIC energy

v’ pp data at the LHC energy of 2-7 TeV well

predicted
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Hydrodynamics & Energy Scaling vs Data

from Landau Hydrodynamics <
0) = 0 = PP L=In>Y— =
IO( ) ppp( )Nparthﬁ) LNN 2m é

Landau Hydrodynamics+
Constituent Quark approach

(0) = por(0) 2N, ; 41n 3
PRV = Pre N NPP In(4m2 /snn)

v" Nuclear data both on midrapidity density
and mean multiplicity energy dependence
well reproduced up to top RHIC energy

v pp data at the LHC energy of 2-7 TeV well
predicted

v' Heavy-ion collisions at the LHC indicate a
transition to a possibly new regime with
more degrees of freedom
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Hydrodynamics and Effective Energy

Effective Energy:
Effective energy can be calculated as following:
ENN — \/SNN(l — Oz)

Here & is centrality percentile.
e.g. For 0-5% central collision a = 0.025
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Hydrodynamics and Effective Energy

Effective Energy:
Effective energy can be calculated as following:
ENN — \/SNN(l — Cv)

Here & is centrality percentile.
e.g. For 0-5% central collision a = 0.025

2Nch 2 ln 3
0) = 0 1—
'0( ) ’Opp( )NpartNEﬁ) \/ ln(Zmp/ENN)

ENN = /Spp/3
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Upto top RHIC energy the
data show slight increase as
centrality decreases

LHC data has monotonic
increasing behavior
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Upto top RHIC energy the
data show slight increase as
centrality decreases

LHC data has monotonic
increasing behavior

CQM+Landau calculations
have a very good agreement
with data
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Upto top RHIC energy the
data show slight increase as
centrality decreases

LHC data has monotonic
increasing behavior

CQM+Landau calculations
have a very good agreement
with data

Effective energy dissipation
(red line of the fit to head-on
collision data energy
dependence [next slide]) also
explains data and gives

predictions at \/SNN= 5.52 Te7V



Charged Particle Mid-rapidity Density
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E, in Constituent Quark Framework

v Similar to the midrapidity
density E; measurements show
iIndependence of centrality as
soon as recalculated in the
constituent quark frame
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E, in Constituent Quark Framework

v Similar to the midrapidity
density E; measurements show
iIndependence of centrality as
soon as recalculated in the
constituent quark frame

v Indicates an importance of
constituent quark degrees of
freedom, therefore the effective
energy of participants deriving
particle production
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Summary

Centrality and c.m. energy dependence of bulk observables (charged
particle and transverse energy midrapidity density) are analyzed for all
available energies

Universality in particle production process is obtained based on the model
considering dissipating energy available at the early stage of collision from
Interacting participants depending upon their type

Bulk observables in heavy-ion collisions are well reproduced from those in
pp collisions, treated within constituent quark model and Landau
hydrodynamics

Available measurements upto LHC energies agree well with the model
expectations. A possible transition to a new regime at Vs, = 0.5 — 1.0 TeV is
indicated, the measurements are welcome

Prediction for the foreseen LHC energy at 5.52 TeV Pb+Pb collisions is
made
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