

Recent results on associated vector boson production with the ATLAS & CMS experiments

Sofia Chouridou

University of Athens

On behalf of the ATLAS & CMS Collaborations

XLIV ISMD2014, Bologna, Italy, 9/9/14

• ATLAS and CMS Detectors

Results at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV

- W + jets NEW!
 - ATLAS: ATLAS-CONF-2014-035, CMS: arXiv:1406.7533
- **Z** + jets
 - **ATLAS:** JHEP07 (2013) 032
 - CMS NEW!: arXiv:1408.3104 , CMS-PAS-SMP-13-007, CMS-PAS-SMP-14-009, CMS-PAS-SMP-14-005
- Rjets = (W + jets) / (Z + jets)
 - ATLAS NEW!: arXiv:1408.6510, CMS: JHEP01 (2012) 010
- Zb, Zbb NEW!
 - ATLAS: arXiv:1407.3643, CMS: JHEP06 (2014) 120, JHEP12(2013)039
- Wb, Wbb
 - ATLAS: JHEP06 (2013) 084, CMS NEW!: arXiv:1312.6608
- Wc
 - **ATLAS:** JHEP05 (2014) 068, **CMS:** JHEP02 (2014) 013
- ttbarW, ttbarZ NEW!
 - **ATLAS:** ATLAS-CONF-2014-038, **CMS:** arXiv:1406.7830
- Summary and Outlook

A Toroidal LHC ApparatuS & Compact Muon Solenoid

Sofia Chouridou

- Precision measurements of associated vector boson production at the LHC are crucial
 - Vector boson leptonic decays (electrons, muons) are studied (clean signatures)
- Test and validate the perturbative QCD (pQCD) calculations
- Constrain the parton proton structure (**PDFs**)
- Provide important experimental constraints to improve the theoretical uncertainties on existing predictions
- Important background for numerous <u>Standard Model (SM) processes</u>
 - ttbar, single top
 - Higgs boson production

and for physics beyond SM

Supersymmetry

ATLAS

- p_{T μ}, p_{T e} > 25 GeV
- |η| < 2.47 (e), 2.4 (μ)
- AntikT4, Jet p_T > 30 GeV, |y| < 4.4
- E_{Tmiss} > 40 GeV, m_T > 40 GeV

CMS – muon channel only

- $p_{T \mu} > 25 \text{ GeV}$
- $|\eta_{\mu}| < 2.1$
- AntikT5, Jet $p_T > 30$ GeV, | η | < 2.4, b-jet veto
- $m_T > 50 \text{ GeV}$
- **Unfolded** results compared at **particle level** with **LO** and **NLO** theory predictions
 - Bayesian Iterative Unfolding (ATLAS)
 - Singular Value Decomposition (SVD) unfolding (CMS)
- **Parton-level predictions (BLACKHAT+SHERPA)** corrected for hadronisation, UE, QED FSR
- Theory systematic uncertainties: PDF, scale(μ_{R} , μ_{F}), α_{s}
- Dominant systematic uncertainties
 - ATLAS: Jet energy scale (JES), data driven ttbar background estimation (high jet multiplicities)
 - CMS: JES and Jet energy resolution (JER)
 - ttbar background is modelled with simulation

5.0 fb⁻¹

Inclusive jet multiplicity for up to 7 (ATLAS) and 6 (CMS) jets

Measurements in agreement within uncertainties with theoretical predictions

ISMD2014, 9/9/14

Sofia Chouridou

√s = 7 TeV

CMS

6

- **BLACKHAT+SHERPA, LoopSim** underestimate the data at high p_T (ATLAS)
- MADGRAPH+PYTHIA overestimates the yields up to ~50% (CMS)

5.0 fb⁻¹

√s = 7 TeV

- Data

- $\Delta \Phi$ (j1,j2) and leading jet | η |
- Many other variables measured
 - Exclusive jet multiplicity up to 7 (ATLAS) and 6 (CMS) jets
 - jets y (ATLAS), jets η (CMS)
 - H_T : scalar sum of jets p_T s (CMS), scalar sum of jets p_T s, lepton p_T s, E _{Tmiss} (ATLAS)
 - $\Delta \Phi(j1,j2), \Delta Y(j1,j2), \Delta R(j1,j2), m(j1,j2)$ (ATLAS) Ξ^{10^3}
 - $\Delta \Phi(j, \mu)$ (CMS)

 $p_{T_{\mu}}, p_{T_{e}} > 20 \text{ GeV}$

 $|\eta| < 2.47$ (e), 2.4 (μ)

AntikT4, Jet $p_{T} > 30$ GeV, |y| < 4.4

CMS

- $p_{\top \mu}$, $p_{\top e}$ > 20 GeV
- |η_u| < 2.4
- AntikT5, Jet p_T > 30 GeV, | η | < 2.4
- Two OSSF 71 < m_{II} < 111 GeV •
- Two OSSF 66 < m_{II} < 116 GeV **Inclusive jet multiplicity** up to **7** (ATLAS) and **6** (CMS) jets

- Leading jet p_T up to 700 GeV
 - Up to 4th leading jet
- Also measured:
- Exclusive jet multiplicity CMS 4.9 fb⁻¹ (7 TeV) $\begin{array}{c} (1/\sigma_{Z\gamma' \rightarrow \Gamma I}) \ d\sigma/dp_T^{\text{lef}} \left[1/GeV \right] \\ 0 & 0 & 0 \\ \end{array}$ ATLAS $Z/\gamma^*(\rightarrow l^+l^-) + \geq 1$ jet $(l=e,\mu)$ [pb/GeV] jets y (ATLAS) HH, Data $L dt = 4.6 \text{ fb}^{-1}$ ✓● ✓ Data 2011 (\s = 7 TeV) 10^{-2} ALPGEN anti-k, jets, R = 0.4 Powheg+Pythia6 (1j NLO) - jets η (CMS) – SHERPA MadGraph+Pythia6 (≤4j LO) b^{jet} > 30 GeV, |y^{jet}| < 4.4 dơ/dp_ ∣ MC@NLO - **H**_T, **S**_T (ATLAS) BLACKHAT + SHERPA 10-2 **CMS** H_T (CMS) **ATLAS** 10⁻³ 10⁻⁵ **ATLAS:** $Z/\gamma^* \rightarrow II$ selection 10^{-4} anti-k₊ (R = 0.5) jets 10⁻⁶ N_{iet}+1/N_{iet} p^{jet} > 30 GeV. m^{jet} | < 2.4 10⁻⁵ $- \Delta \Phi, \Delta Y, \Delta R(j1, j2)$ 10 Sherpa2_{β2} Theory/Data 1.5 m(j1,j2) BLACKHAT + SHERPA NLO / Data 1.2 0.5 Theory syst.+stat. Theory stat. Powheg+Pythia6 Theory/Data 1.5 🕨 ÁLPGEN MC / Data 0.8 0.5 Theory syst.+stat. 🗾 Theory stat. **ALPGEN** spectrum harder MadGraph+Pythia6 🛦 SHERPA Theory/Data 1.5 MC / Data at higher p_T 1.2 SHERPA small offset to data 0.8 0.5 0.6 Theory stat.

400

500

 p_{τ}^{jet} (leading jet) [GeV]

300

100

200

500

Leading jet p_ [GeV]

600

700

100

200

300

400

Z + jets (8 TeV, CMS)

- Same event selection as for 7 TeV CMS analysis
- Unfolding performed with D' Agostini Method (Bayesian iterative unfolding)
- Also measured **up to 5 jets**:
 - Exclusive jet multiplicity (7 jets)
 - jets p_T , | η |

Double Differential cross section (8 TeV, CMS)

- **First study** of the double differential cross section in the Z + jets final state
 - Versus the **leading jet p_T and jet rapidity y** (seven y bins)
- Similar analysis to the previous CMS ones
 - Jet p_{T} > 30 GeV for $|\eta|$ < 2.5
 - Jet $p_{T} > 50$ GeV for 2.5 < $|\eta| < 4.7$

- Disagreement of ~ 10% between **MADGRAPH** and data for jet $p_T > 100$ GeV
 - Some discrepancies also with SHERPA 2 (need more investigation)

Rjets (7 TeV, ATLAS)

- Some experimental uncertainties and non-perturbative effects are greatly reduced
- Sensitive to new physics at high energies
- Measured versus many more variables

- $p_{T \mu}, p_{T e} > 25 \text{ GeV}$ $|\eta| < 2.47 (e), 2.4 (\mu)$
- AntikT4, Jet $p_{T} > 30$ GeV, |y| < 4.4
- **W:** $E_{Tmiss} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$
- **Z:** Two OSSF 66 < m_{\parallel} < 116 GeV

Zb, Zbb (7 TeV)

ATLAS

- p_{T μ}, p_{Te} > 20 GeV
- |η| < 2.47 (e), 2.4 (μ)
- AntikT4, Jet p_T > 20 GeV, |y| < 2.4
- Two OSSF 76 < $m_{\rm II}$ < 106 GeV
- At least one or two b-jets

CMS

- $p_{T \mu}, p_{Te} > 20 \text{ GeV}$
- $|\eta_{\mu}| < 2.4$
- AntikT5, Jet p_T > 25 GeV, | η | < 2.1
- Two OSSF 76 < m_{II} < 106 GeV
- Exactly one or at least two b-jets
- Jets originating from b quarks are tagged by
 - **MV1** algorithm (ATLAS)
 - Simple Secondary Vertex (SSV) algorithm (CMS)

CMS measurements:

- Z + 1 b-jet, Z + ≥ 1 b-jet, Z + ≥ 2 b-jet
- Ratio: $Z + \ge 1$ b-jet / Z + any flavour jet
- Angular correlations of b hadrons probing the collinear gluon splitting to bb (JHEP12(2013)039)

• ATLAS measurements:

- Z + ≥ 1 b-jet, Z + ≥ 2 b-jet
- b-jet p_{\top} and rapidity, Zp_{\top} and rapidity
- $\Delta \Phi(Z,b), \Delta Y(Z,b), \Delta R(Z,b)$

Z production with at least two b-jets

- Two schemes in pQCD calculations containing heavy flavour guarks
 - 4FNS: no b quarks at initial state
 - **5FNS:** b guarks considered at initial state

(5FNS): largest discrepancies (ATLAS)

Wb, Wbb (7 TeV)

ATLAS

- $p_{T \mu}$, $p_{T e} > 25$ GeV, $|\eta| < 2.47$ (e), 2.4 (μ)
- AntikT4, Jet $p_{\top} > 25$ GeV, |y| < 2.1
- $E_{Tmiss} > 25 \text{ GeV}, m_T > 60 \text{ GeV}$
- Only one b-jet

CMS – muon channel only

- $p_{\top \mu} > 25 \text{ GeV}, |\eta_{\mu}| < 2.1$
- AntikT5, Jet $p_{T} > 25$ GeV, $|\eta| < 2.4$
- $m_T > 45 \text{ GeV}$
- Exactly two b-jets

Measurements in agreement with theoretical predictions

• ATLAS: consistent with NLO within 1.5 σ

ISMD2014, 9/9/14

Sofia Chouridou

Wc (7 TeV)

Wc (7 TeV)

- Cross section ratio $(W^+ + cbar) / (W^- + c)$
- The observed **W**⁻ + **c** yield slightly larger than the **W**⁺ + **cbar**
 - dominance of the d-quark over the d-antiquark in the proton (as expected)

- Also measured:
 - Differential cross sections (W + c) vs. lepton $|\eta|$
 - The ratio (r_s) of the strange-to-down sea-quark distributions (symmetric light-quark sea) (ATLAS) $r_s \equiv 0.5(s+\overline{s})/\overline{d} = 0.96^{+0.26}_{-0.30}$

Results of the **combined simultaneous fit** for ttbarW and ttbarZ cross sections are **in agreement** with **NLO QCD predictions**:

- Campbell (2012), Kardos (2011) and Garzelli (2011,2012) for ATLAS
- MADGRAPH5_aMC@NLO for CMS (in agreement with those used by ATLAS)

Summary and Outlook

- **ATLAS and CMS excellent performance** allow the precise study of associated vector boson production
- A **hot topic** for theoretical studies for several years can be finally exploited with high precision experimental measurements!
- Several results for **7 TeV (2011)** and **8 TeV (2012)** were presented
 - Overall good agreement with theory predictions; some discrepancies exist
- Many **8 TeV (2012)** measurements are in progress
- **Important feedback** to theorists and our understanding of QCD and electroweak processes in the high energy LHC regime

Looking forward for more precise measurements next year at 13 TeV!

BACKUP

Total Integrated Luminosity in 2011 and 2012

