Multiplicity, Jet, and Transverse Mass dependence of Bose-Einstein Correlations in e+e- Annihilation

W.J. Metzger

Radboud University Nijmegen

XLIV Symposium on Multiparticle Dynamics Bologna 8–12 September 2014

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

BEC Introduction

$$R_2 = \frac{\rho_2(\rho_1, \rho_2)}{\rho_1(\rho_1)\rho_1(\rho_2)} \Rightarrow \frac{\rho_2(Q)}{\rho_0(Q)}$$

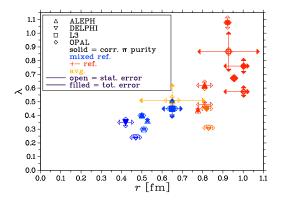
Assuming particles produced incoherently with spatial source density S(x),

 $R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ — Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a Gaussian with radius $r \implies R_2(Q) = 1 + \lambda e^{-Q^2 r^2}$

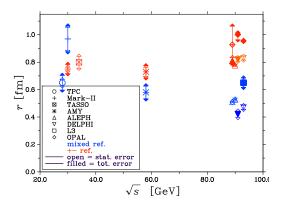
Results from R_2 , $\sqrt{s} = M_Z$



– correction for π purity increases λ

- mixed ref. gives smaller λ , r than +- ref. - Average means little

\sqrt{s} dependence of r

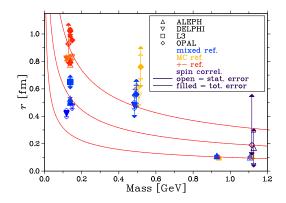


イロト イロト イヨト イヨト

æ

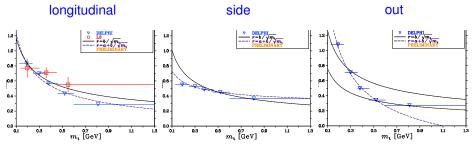
No evidence for \sqrt{s} dependence

Mass dependence of r — BEC and FDC



r(mesons) > r(baryons)

Transverse Mass dependence of *r* in LCMS



r decreases with $m_{\rm t}$ but not equally fast in all components

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

The L₃ Data

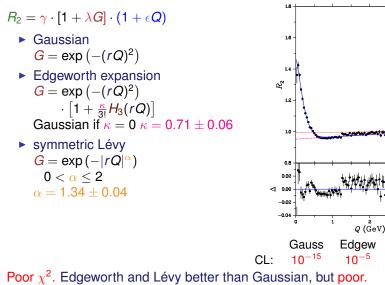
• $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$

- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀
 corrected by MC (no BEC) for kinematics, resonances, etc.

$$\rho_0 \Longrightarrow \rho_0 \cdot \frac{\rho^{\rm MC}}{\rho_0^{\rm MC}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Results - 'Classic' Parametrizations



L3

(Ъ)

Symmetric Levy

Lévy

 10^{-8}

Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$ where for 2-jet events, $a = 1/m_{t}$ $\tau = \sqrt{\overline{t}^{2} - \overline{r}_{z}^{2}}$ is the "longitudinal" proper time

and $m_{\rm t} = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

- ► Let $\delta_{\Delta}(x^{\mu} \overline{x}^{\mu})$ be dist. of prod. points about their mean, and $H(\tau)$ the dist. of τ . Then the emission function is $S(x, p) = \int_{0}^{\infty} d\tau H(\tau) \delta_{\Delta}(x - a\tau p) \rho_{1}(p)$
- ► In the plane-wave approx. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left(\left[p_1 - p_2\right] [x_1 - x_2]\right)\right)$ ► Assume $\delta_{\Lambda}(x^{\mu} - \overline{x}^{\mu})$ is very narrow — a δ -function. Then

 $R_2(p_1, p_2) = \mathbf{1} + \lambda \operatorname{Re} \widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

BEC in the au-model

Assume a Lévy distribution for H(τ)
 Since no particle production before the interaction,
 H(τ) is one-sided.
 Characteristic function is

 $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha}\left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\omega\tau_{0}\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R_2 depends on Q, a_1, a_2

$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos\left[\frac{\tau_{0}Q^{2}(a_{1} + a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right)\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right] \\ \cdot \exp\left[-\left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha}\frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2}\right]\right\} \cdot (1 + \epsilon Q)$$

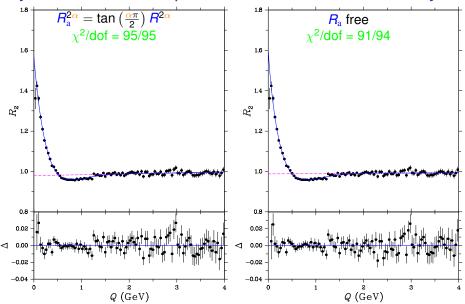
BEC in the au-model

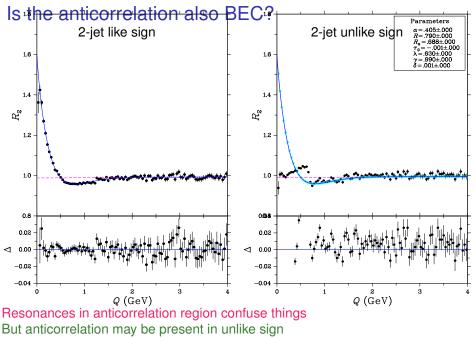
$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(a_{1}+a_{2})}{2} + \tan\left(\frac{\alpha\pi}{2}\right) \left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta\tau Q^{2}}{2}\right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- ► Then $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$ Compare to sym. Lévy parametrization: $R_{2}(Q) = \gamma \left[1 + \lambda \qquad \exp \left[-|rQ|^{-\alpha} \right] \right] (1 + \epsilon Q)$
- R describes the BEC peak
- *R*_a describes the anticorrelation dip
- τ -model: both anticorrelation and BEC are related to 'width' $\Delta \tau$ of $H(\tau)$

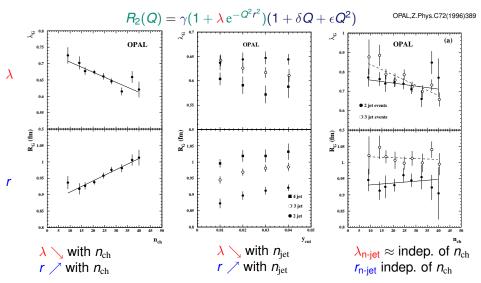
2-jet Results on Simplified τ -model from L₃ Z decay





▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Multiplicity/Jet dependence - OPAL



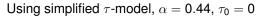
Multiplicity dependence appears to be largely due to number of jets.

Multiplicity/Jet dependence in au-model

- Use simplified τ -model, $\tau_0 = 0$ to investigate multiplicity and jet dependence
- To stabilize fits against large correlation of parameters α and R fix $\alpha = 0.44$

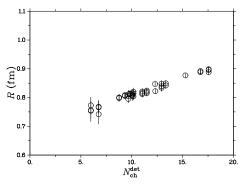
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

Multiplicity dependence in au-model



< ≣⇒

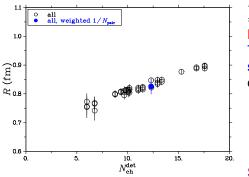
E



R increases with multiplicity

Multiplicity dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$



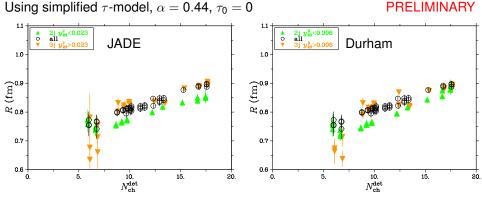
R increases with multiplicity

R not constant \implies *R* from fit is an average But maybe not the average we want To get *R* at avg. multiplicity of sample, should weight pairs by $1/N_{\text{pairs in event}}$ or calculate average multiplicity as

$$\frac{\sum_{\text{events}} N_{\text{event}} N_{\text{pairs in event}}}{N_{\text{pairs}}}$$

But the difference is small So I ignore it.

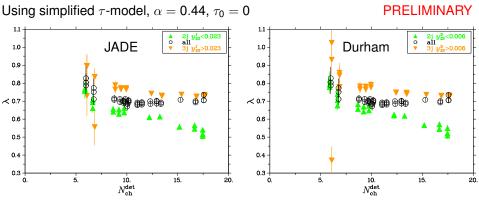
Multiplicity/Jet dependence in au-model



 R increases with N_{ch} and with number of jets whereas OPAL found r_{n-jet} approx. indep. of N_{ch}

- Increase of R with N_{ch} similar for 2- and 3-jet events
- However, $R_{3-jet} \approx R_{all}$

Multiplicity/Jet dependence in au-model

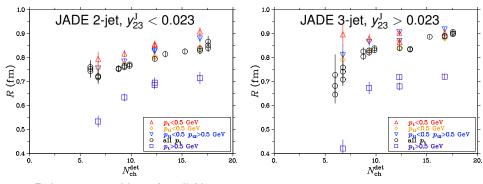


- $\lambda_{3-jet} > \lambda_{2-jet}$ opposite of OPAL
- λ initially decreases with N_{ch}
- then λ_{all} and λ_{3-jet} approx. constant while λ_{2-jet} continues to decrease, but more slowly
- ► whereas OPAL found λ_{all} decreasing approx. linearly with N_{ch}

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

and cutting on $p_t = 0.5 \,\text{GeV} \ (m_t = 0.52 \,\text{GeV})$

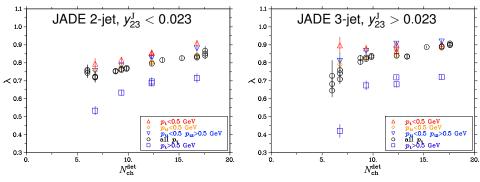


 R decreases with m_t for all N_{ch} smallest when both particles at high p_t

$m_{\rm t}$ dependence in au-model

Using simplified τ -model, $\alpha = 0.44$, $\tau_0 = 0$

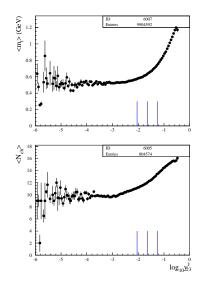
and cutting on $p_t = 0.5 \,\text{GeV} (m_t = 0.52 \,\text{GeV})$



 λ decreases with m_t smallest when both particles at high p_t

On what do r, R, λ depend?

- ▶ r, R increase with N_{ch}
- r, R increase with N_{jets}
- for fixed number of jets, *R* increases with N_{ch} but *r* constant with N_{ch} (OPAL)
- r, R decrease with m_t
- Although m_t, N_{ch}, N_{jets} are related, each contributes to the increase/decrease of R but only m_t, N_{jets} contribute to the increase/decrease of r
- λ decreases with N_{ch}, N_{jets} though somewhat differently for τ-model, Gaussian (OPAL)
- λ decreases with m_t



・ロト ・回ト ・ヨト

æ

ADDITIONAL MATERIAL

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction — Correlations

$$\rho_q(\mathbf{p}_1,...,\mathbf{p}_q) = \frac{1}{\sigma_{\text{tot}}} \frac{\mathrm{d}^q \sigma_q(\mathbf{p}_1,...,\mathbf{p}_q)}{\mathrm{d}\mathbf{p}_1...\mathrm{d}\mathbf{p}_q}$$

$$\int \rho_1(p) dp = \langle n \rangle$$

$$\int \rho_2(p_1, p_2) dp_1 dp_2 = \langle n(n-1) \rangle$$

$$\rho_{1}(p_{1}) = C_{1}(p_{1})$$

$$\rho_{2}(p_{1}, p_{2}) = C_{1}(p_{1})C_{1}(p_{2}) + C_{2}(p_{1}, p_{2})$$

$$\rho_{3}(p_{1}, p_{2}, p_{3})) = C_{1}(p_{1})C_{1}(p_{2})C_{1}(p_{3})$$

$$+ \sum_{3 \text{ perms}} C_{1}(p_{1})C_{2}(p_{2}, p_{3})$$

$$+ C_{3}(p_{1}, p_{2}, p_{3})$$

$$C_2 = \rho_2(p_1, p_2) - C_1(p_1)C_1(p_2)$$

(ロ) (部) (E) (E) (E)

$$R_q = \frac{\rho_q}{\prod_{i=1}^q \rho_1(p_i)} \qquad \qquad K_q = \frac{C_q}{\prod_{i=1}^q \rho_1(p_i)}$$

e.g.,
$$R_2 = 1 + \frac{C_2}{\rho_1(\rho_1)\rho_1(\rho_2)} = 1 + K_2$$

q-particle density where σ_q is inclusive cross section Normalization:

In terms of 'factorial cumulants', C

"trivial" 3-particle correlations "genuine" 3-particle correlations

2-particle correlations

Introduction — BEC

To study BEC, not other correlations, replace $\prod_{i=1}^{q} \rho_1(p_i)$ by $\rho_0(p_1, ..., p_q)$, the *q*-particle density if no BEC (reference sample)

e.g., 2-particle BEC are studied in terms of $a(p_1, p_2)$

$$R_2(p_1, p_2) = rac{
ho(p_1, p_2)}{
ho_0(p_1, p_2)}$$

Since 2- π BEC only at small $Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_{\pi}^2}$,

integrate over other variables

$$R_2(Q) = rac{
ho(Q)}{
ho_0(Q)}$$

Assuming incoherent particle production and spatial source density S(x),

$$R_2(Q) = 1 + |G(Q)|^2$$

where $G(Q) = \int dx e^{iQx} S(x)$ is the Fourier transform of S(x)Assuming S(x) is a Gaussian with radius *r*

$$R_2(Q) = 1 + e^{-Q^2 r^2}$$

<回> < 回> < 回> < 回>

$R_2(Q) \propto 1 + \lambda e^{-Q^2 r^2}$

Assumes

- incoherent average over source
 λ tries to account for
 - partial coherence
 - ►

multiple (distinguishable) sources, long-lived resonances

- pion purity
- spherical (radius r) Gaussian density of particle emitters seems unlikely in e⁺e⁻

annihilation — jets
static source, *i.e.*, no

t-dependence certainly wrong

- Nevertheless, this Gaussian formula is the most often used parametrization And it works fairly well
- But what do the values of λ and r actually mean?

When Gaussian parametrization does not fit well,

► can expand about the Gaussian (Edgeworth expansion). Keeping only the lowest-order non-Gaussian term, $\exp(-Q^2r^2)$ becomes $\exp(-Q^2r^2) \cdot \left[1 + \frac{\kappa}{3!}H_3(Qr)\right]$

(*H*₃ is third-order Hermite polynomial)

► Assume source radius is a symmetric Lévy distribution rather than Gaussian exp (-Q²r²) becomes

 $\exp\left(-Q^2 r^{lpha}
ight) \quad , 0<lpha\leq 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

 α is the Lévy index of stability

Experimental Problems I

- I. Pion purity
 - 1. mis-identified pions K, p
 - correct by MC. But is it correct?
 - 2. resonances
 - long-lived affect λ BEC peak narrower than resolution
 - short-lived, *e*.g., ρ , affect *r*
 - correct by MC. But is it correct?
 - 3. weak decays
 - \sim 20% of Z decays are $\mathrm{b}\bar{\mathrm{b}}$

like long-lived resonances, decrease λ

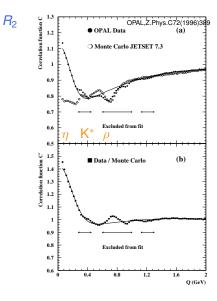
 per Z: 17.0 π[±], 2.3 K[±], 1.0 p (15% non-π)

Origin of π^+ in Z decay	(%) (JETSET 7.4)
	(JETSET7.4)
direct (string fragmentation)	16
decay (short-lived resonances) $\Gamma > 6.7 \mathrm{MeV}, \tau < 30 \mathrm{fm}$ $(ho, \omega, \mathrm{K}^*, \Delta,)$	62
decay (long-lived resonances) $\Gamma < 6.7{\rm MeV}, \tau > 30{\rm fm}$	22

Experimental Problems II

- II. Reference Sample, ρ_0 — it does NOT exist Common choices:
 - 1. +, pairs But different resonances than +, + - correct by MC. - But is it correct?
 - 2. Monte Carlo But is it correct?
 - Mixed events pair particles from different events But destroys all correlations, not just BEC
 - correct by MC. But is it correct?
 - Mixed hemispheres (for 2-jet events)

 pair particle with particle reflected from opposite hemisphere
 But destroys all correlations
 correct by MC. – But is it correct?

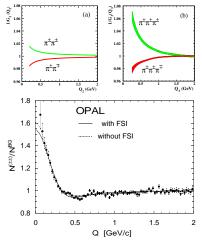


・ロト ・回ト ・ヨト ・ヨト

Experimental Problems III, IV

- III. Final-State Interactions
 - 1. Coulomb
 - form not certain (usually use Gamow factor) overcorrects!
 - for R_2 , a few % in lowest Q bin
 - double if +, ref. sample
 - often neglected for R₂
 - but not negligible for R_3
 - 2. Strong interaction $S = 0 \pi \pi$ phase shifts can be incorporated together with Coulomb into the formula for R_2

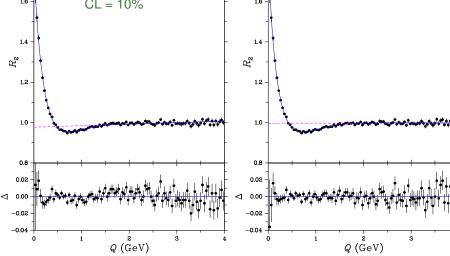
 $\begin{array}{l} & \text{Osada, Sano, Biyajima, Z.Phys. C72(1996)285)} \\ \hline \textbf{tends to increase } \lambda, \ \textbf{decrease } r \\ \textbf{e.g., using OPAL data:} \\ & \lambda_{noFSI} = 0.71, \ \lambda_{FSI} = 1.0 \\ & \textbf{r}_{noFSI} = 1.34, \ \textbf{r}_{FSI} = 1.09 \ \text{fm} \\ \hline \textbf{- Not used by experimental groups} \end{array}$

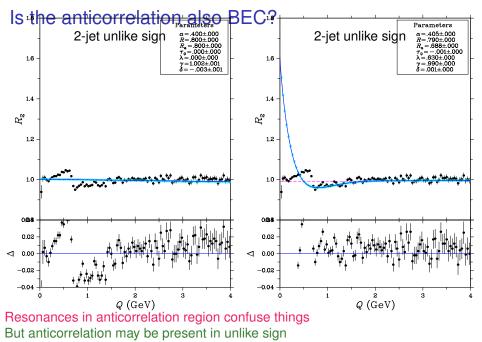


IV. Long-range correlations inadequately treated in ref. sample: $R_2(Q) \propto (1 + \lambda e^{-Q^2 r^2})(1 + \delta Q)$

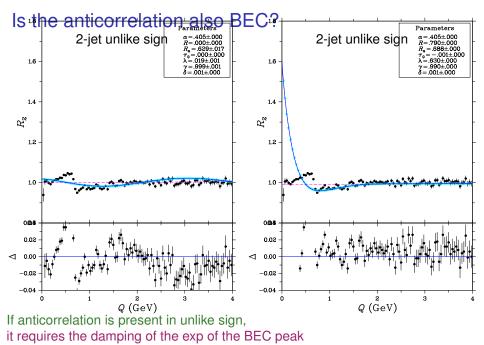
・ロト ・回ト ・ヨト ・ヨト

3-jet Results on Simplified τ -model from L₃ Z decay $R_a^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right)R^{2\alpha}$ $\chi^2/dof = 113/95$ CL = 10% R_a^{α} $\chi^2/dof = 84/94$

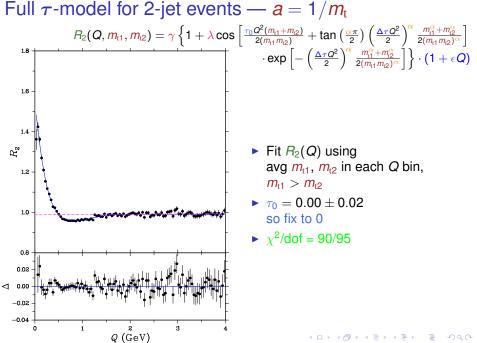




▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ の⊙⊙

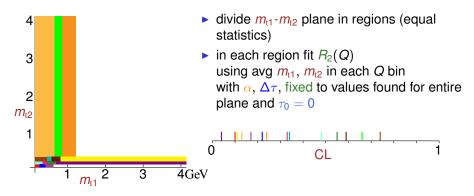


▲□▶▲圖▶▲≣▶▲≣▶ ≣ めるの



Full τ -model for 2-jet events

- τ -model predicts dependence on m_t , $R_2(Q, m_{t1}, m_{t2})$
- Parameters α , $\Delta \tau$, τ_0 are independent of m_t
- λ (strength of BEC) can depend on $m_{\rm t}$



Elongation?

- ► Previous results using fits of Gaussian or Edgeworth found (in LCMS) $R_{\rm side}/R_{\rm L} \approx 0.64$
- But we find that Gaussian and Edgeworth fit $R_2(Q)$ poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function? or is the τ-model in need of modification?

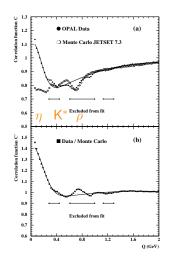
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- So, we modify ad hoc the τ -model description to allow elongation
- and find $R_{\rm side}/R_{\rm L} = 0.61 \pm 0.02 elongation$ is real
- ▶ Perhaps, $\overline{\mathbf{x}}^{\mu}(\mathbf{p}^{\mu}) = \mathbf{a} \tau \mathbf{p}^{\mu}$ should only apply to $\mu =$ longitudinal

OPAL,Z.Phys.C72(1996)389

- Ref. sample is +, pairs different resonances than +, +
- Correction by MC insufficient
- Exclude 'resonance regions'

$$R_2(Q) = \gamma(1 + \lambda e^{-Q^2 r^2})(1 + \delta Q + \epsilon Q^2)$$



・ロト ・回 ト ・ヨト ・ヨト

-

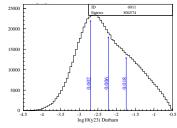
Jets

Jets — JADE and Durham algorithms

- force event to have 3 jets:
 - normally stop combining when all 'distances' between jets are > y_{cut}
 - instead, stop combining when there are only 3 jets left
 - y₂₃ is the smallest 'distance' between any 2 of the 3 jets
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3
- define regions of $y_{23}^{\rm D}$ (Durham):

 $\begin{array}{ll} y_{23}^{\rm D} < 0.002 & {\rm narrow \ two-jet} & {\rm or} \\ 0.002 < y_{23}^{\rm D} < 0.006 & {\rm less \ narrow \ two-jet} \\ 0.006 < y_{23}^{\rm D} < 0.018 & {\rm narrow \ three-jet} \\ 0.018 < y_{23}^{\rm D} & {\rm wide \ three-jet} \end{array}$

and similarly for y_{23}^{J} (JADE): 0.009, 0.023, 0.056



 $y_{23}^{\rm D} < 0.006$ two-jet $0.006 < y_{23}^{\rm D}$ three-jet