
Non-equilibrium dynamics of isolated 
quantum systems 

Pasquale Calabrese
University of Pisa

Based on joint works with:

ISMD-14, Bologna, September 2014

John Cardy, Mario Collura, Fabian Essler, Maurizio Fagotti, Marton Kormos, Spyros Sotiriadis



Goal of the talk

von Neumann in 1929 studied this problem 1003.2133

Show that an isolated many-body quantum system prepared in a state |Ψ0⟩

|Ψ(t)⟩=e-iHt |Ψ0⟩ 

can reach for t=∞ , in some sense, a stationary state
The steady state can be thermal or not
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von Neumann in 1929 studied this problem 1003.2133

Show that an isolated many-body quantum system prepared in a state |Ψ0⟩

|Ψ(t)⟩=e-iHt |Ψ0⟩ 

can reach for t=∞ , in some sense, a stationary state

It stayed a purely academic question for many years, but it recently 
became a top question in many branches of physics:

● Cold atoms
● Condensed matter
● Cosmology
● Nuclear physics 

The steady state can be thermal or not





T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Essentially 
unitary time 
evolution

Quantum Newton cradle

few hundreds 87Rb atoms in a 1D trap



- 1D system relaxes slowly in time, to a non-thermal distribution
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- 2D and 3D systems relax quickly and thermalize:

Can a steady state be attained? Surprisingly, YES



- 1D system relaxes slowly in time, to a non-thermal distribution

0τ 2τ 4τ 9τ

- 2D and 3D systems relax quickly and thermalize:

Can a steady state be attained? Surprisingly, YES

The 1D case is special because the system is almost integrable

Non-equilibrium new states of matter

When and why a steady state is thermal??
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• Numerics and experiment agree perfectly

• The stationary state looks thermal
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• Numerics and experiment agree perfectly

• The stationary state looks thermal

Common Belief: - Generic systems “thermalizes”
- Integrable systems are different

Deutsch ’91, 
Srednicki ’95

Rigol et al ’07

But the system is always in a pure state!



Reduced density matrix

Reduced density matrix: ρA(t)=TrB ρ(t)

|Ψ(t)⟩ time dependent pure state

ρ(t) = |Ψ(t)⟩⟨Ψ(t)| density matrix of AUB 

The expectation values of all local observables in A are

⟨Ψ(t)|OA(x) |Ψ(t)⟩ = Tr[ρA(t) OA(x)]

B
A
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Stationary state: if for any finite subsystem A of an infinite system, it exists the limit 

lim ρA(t) = ρA(∞)
t→∞

Note: in a finite system, the stationary state is the regime |A|<< vt<< L



Consider the Gibbs ensemble for the entire system AUB 

Thermalization

with

Reduced density matrix for subsystem A:   ρA,T=TrB ρT

The system thermalizes if for any finite subsystem A

ρA,T = ρA(∞)

The infinite part B of the system “acts as an heat bath for A”

ρT= e-H/Teff /Z ⟨Ψ0| H |Ψ0⟩ = Tr[ρT H]

Teff  is fixed by the energy in the initial state: no free parameter!!



What about integrable systems?

Generalized Gibbs Ensemble

Proposal by Rigol et al 2007:  The GGE density matrix

ρGGE= e-∑ λm Im /Z ⟨Ψ0| Im |Ψ0⟩ = Tr[ρGGE Im]with λm fixed by
Again no free parameter!!

Im are the integrals of motion of H, i.e. [Im ,H]=0



What about integrable systems?

Generalized Gibbs Ensemble

Proposal by Rigol et al 2007:  The GGE density matrix

ρGGE= e-∑ λm Im /Z ⟨Ψ0| Im |Ψ0⟩ = Tr[ρGGE Im]with λm fixed by

Reduced density matrix for subsystem A: ρA,GGE=TrB ρGGE

The system is described by GGE if for any finite subsystem A of an 
infinite system

ρA,GGE = ρA(∞) [Barthel-Schollwock ’08]
[Cramer, Eisert, et al ’08] + ........
[PC, Essler, Fagotti ’12]

Again no free parameter!!

Im are the integrals of motion of H, i.e. [Im ,H]=0



Generalized Gibbs Ensemble

Which integral of motions must be included in the GGE?

Any quantum system has too many integrals of motion,
regardless of integrability, e.g. 

Om = |Em⟩⟨Em| 



Generalized Gibbs Ensemble

Which integral of motions must be included in the GGE?

Any quantum system has too many integrals of motion,
regardless of integrability, e.g. 

Om = |Em⟩⟨Em| 

In this case B is not a standard heat bath for A: 
infinite information on the initial state is retained!

[PC, Essler, Fagotti ’12]

ρGGE= e-∑ λm Im /Z

where Im is a complete set of local (in space) integrals of motion
[Im ,In]=0   [Im ,H]=0      Im =∑ Om(x)

x

New proposal: 



Quantum mechanics exercise

Solving Heisenberg equation of motion

Not surprisingly, the harmonic oscillator oscillates 

Chain of harmonic oscillators
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Integrating Heisenberg equation of motions

⌃⇤r (t)⇤0(t)⌥ � ⌃⇤r (0)⇤0(0)⌥ =

⇧

BZ
e ikr (�2

0k � �2
k)(1� cos(2�kt))

�2
k�0k

dk

In the massless case �k ⇥ v |k| for k ⇤ 0 and for m0 ⇤⇧

⌃⇤r (t)⇤0(t)⌥ =

⇤
0 for t < r/2v

m0(t � r/2v) for t > r/2v

Taking e iq� (that is the primary field)

⌃e iq�(r ,t)e�iq�(0,t)⌥ =

⇤
e�m0q

2t for t < r/2

e�m0q
2r/2 for t > r/2

that confirms the CFT results with ⇥0 ⇥ m�1
0 and x� ⌅ q2

Pasquale Calabrese Quantum Quenches

Chain of harmonic oscillators

H =
1

2

⌅

r

�
�2

r + m2⇤2
r +

⌅

j

⌅2
j (⇤r+j � ⇤r )

2
⇥

=
⌅

k

�ka†kak

and similarly H0 with �0k

H =
p2

2
+

⌅2

2
x2

H0 =
p2

2
+

⌅2
0

2
x2

Integrating Heisenberg equation of motions

⌃⇤r (t)⇤0(t)⌥ � ⌃⇤r (0)⇤0(0)⌥ =

⇧

BZ
e ikr (�2

0k � �2
k)(1� cos(2�kt))

�2
k�0k

dk

In the massless case �k ⇥ v |k| for k ⇤ 0 and for m0 ⇤⇧

⌃⇤r (t)⇤0(t)⌥ =

⇤
0 for t < r/2v

m0(t � r/2v) for t > r/2v

Taking e iq� (that is the primary field)

⌃e iq�(r ,t)e�iq�(0,t)⌥ =

⇤
e�m0q

2t for t < r/2

e�m0q
2r/2 for t > r/2

that confirms the CFT results with ⇥0 ⇥ m�1
0 and x� ⌅ q2

Pasquale Calabrese Quantum Quenches

Chain of harmonic oscillators

H0 ⇤ H

H =
1

2

⌅

r

�
�2

r + m2⇤2
r +

⌅

j

⌅2
j (⇤r+j � ⇤r )

2
⇥

=
⌅

k

�ka†kak

and similarly H0 with �0k
Integrating Heisenberg equation of motions

⌃⇤r (t)⇤0(t)⌥ � ⌃⇤r (0)⇤0(0)⌥ =

⇧

BZ
e ikr (�2

0k � �2
k)(1� cos(2�kt))

�2
k�0k

dk

In the massless case �k ⇥ v |k| for k ⇤ 0 and for m0 ⇤⇧

⌃⇤r (t)⇤0(t)⌥ =

⇤
0 for t < r/2v

m0(t � r/2v) for t > r/2v

Taking e iq� (that is the primary field)

⌃e iq�(r ,t)e�iq�(0,t)⌥ =

⇤
e�m0q

2t for t < r/2

e�m0q
2r/2 for t > r/2

that confirms the CFT results with ⇥0 ⇥ m�1
0 and x� ⌅ q2

Pasquale Calabrese Quantum Quenches

Chain of harmonic oscillators

⌃x2(t)⌥ =
⌅2 + ⌅2

0

4⌅0⌅2
+

⌅2 � ⌅2
0

4⌅0⌅2
cos 2⌅t

H =
1

2

⌅

r

�
�2

r + m2⇤2
r +

⌅

j

⌅2
j (⇤r+j � ⇤r )

2
⇥

=
⌅

k

�ka†kak

and similarly H0 with �0k
Integrating Heisenberg equation of motions

⌃⇤r (t)⇤0(t)⌥ � ⌃⇤r (0)⇤0(0)⌥ =

⇧

BZ
e ikr (�2

0k � �2
k)(1� cos(2�kt))

�2
k�0k

dk

In the massless case �k ⇥ v |k| for k ⇤ 0 and for m0 ⇤⇧

⌃⇤r (t)⇤0(t)⌥ =

⇤
0 for t < r/2v

m0(t � r/2v) for t > r/2v

Taking e iq� (that is the primary field)

⌃e iq�(r ,t)e�iq�(0,t)⌥ =

⇤
e�m0q

2t for t < r/2

e�m0q
2r/2 for t > r/2

that confirms the CFT results with ⇥0 ⇥ m�1
0 and x� ⌅ q2

Pasquale Calabrese Quantum Quenches

Quenching the frequency in one harmonic oscillator



Many oscillators

A. The chain of harmonic oscillators

The simplest model with an exactly solvable non-equilibrium dynamics is surely a chain
of coupled harmonic oscillators with hamiltonian

H =
1

2

∑

r

[

π2
r + m2φ2

r +
∑

j

ω2
j (φr+j − φr)

2
]

. (37)

For simplicity we also assume periodic boundary conditions. ϕn and πn are the position and
the momentum operators of the n-th oscillator, with equal time commuting relations

[ϕm, πn] = iδnm [ϕn, ϕm] = [πn, πm] = 0 . (38)

The Hamiltonian (37) is diagonalized in terms of annihilation and creation operators in
reciprocal space: H =

∑

k ΩkA
†
kAk. The model corresponds to some limits of bosons hopping

on a lattice and so our results are similar to other obtained independently [15,24].
Although it is straightforward (if tediously) to solve the Heisenberg equation of motion

in the general case, we believe more instructive to describe the calculation for the chain with
only nearest-neighbor couplings

H(m) =
1

2

N−1
∑

n=0

[

1

a
π2

n + am2ϕ2
n +

1

a
(ϕn+1 − ϕn)2

]

, (39)

where we explicitly introduced the lattice spacing a. The Hamiltonian can be written in
diagonal form H(m) =

∑

k ΩkA
†
kAk with modes

Ak =
1√

2aΩk

(aΩkϕk + iπk) , (40)

A†
k =

1√
2aΩk

(aΩkϕ−k − iπ−k) , (41)

Ω2
k = m2 +

2

a2

(

1 − cos
2πk

N

)

. (42)

Note that we use the same symbols for the operators and their Fourier transforms (ϕk =
1/
√

N
∑N−1

n=0 e2πikn/Nϕn and analogously for πk). The final result we will obtain only depends
on the dispersion relations Ωk, and it is relatively simple to show that it holds for the general
hamiltonian (37).

We consider the scenario in which the system is prepared in a state |ψ0〉, that is ground-
state of H(m0), and at the time t = 0 the mass is quenched to a different value m $= m0. We
use the notation Ω0k for the dispersion relation for t < 0 and the Ωk for the one for t > 0.

Being 〈ψ0|ϕn|ψ0〉 = 0, the expectation value of the field ϕn vanishes at any time. This
example in fact corresponds to the quench from the disordered phase in the language of the
previous section. Thus we concentrate our attention on the two-point function

〈ψ(t)|ϕnϕ0|ψ(t)〉 = 〈ψ0|ϕH
n (t)ϕH

0 (t)|ψ0〉 , (43)
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Each momentum mode is a free oscillator
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Chain of harmonic oscillators
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This compatible with the GGE

m0 →m
Comparing with the CFT result h�(t)i ⇠ e�⇡x�t/2⌧0 where x� = q2/4⇡

we get
m0 = 1/(4⌧0)

On the other hand, the CFT argument would suggest that

⇡
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which is out by a factor 3⇡2/4.
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We consider the scenario in which the system is prepared in a state |ψ0〉, that is ground-
state of H(m0), and at the time t = 0 the mass is quenched to a different value m $= m0. We
use the notation Ω0k for the dispersion relation for t < 0 and the Ωk for the one for t > 0.

Being 〈ψ0|ϕn|ψ0〉 = 0, the expectation value of the field ϕn vanishes at any time. This
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previous section. Thus we concentrate our attention on the two-point function
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Each momentum mode is a free oscillator
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This compatible with the GGE
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Non local... 
but linear combinations of local charges Im 
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The GGE built with nk and 
with Im with are equivalent! 



Quantum quenches in free theories

• Mass quenches in (lattice) field theories 

• Luttinger model quartic term quench 

• Transverse field quench in Ising/XY model 

• Quench to the Tonks-Girardeau model 

• Few more.....

PC-Cardy ’07, Barthel-Schollwock ’08, Cramer, Eisert, et al ’08, Sotiriadis et al ’09.....

Cazalilla ’06, Cazalilla-Iucci ’09, Mitra-Giamarchi ’10....

Barouch-McCoy ’70, Igloi-Rieger ’00-13, Sengupta et al ’04, Rossini et al. ’10, PC, Essler, Fagotti ’11-13
Foini-Gambassi-Cugliandolo’12, Bucciantini, Kormos, PC ’14........

The GGE always turned out to work

Rostunov, Gritsev, Demler ’10, Collura, Sotiriadis, PC ’13, Kormos, Collura, PC ’14.............



How generic this is?
The importance of the initial state

If we take a linear superposition of a finite number of eigenstates, the 
system will obviously oscillate forever 

Can we find some conditions for the initial state/Hamiltonian guaranteeing 
steady state and GGE/thermalization?



How generic this is?
The importance of the initial state

Sotiriadis, PC 2014

For a free theory, the steady state is described by the GGE if the initial 
state satisfy the cluster decomposition property

3

combined thermodynamic and large time limit. This means that all stationary correlations of higher-order can be
derived from solely the two-point initial correlations, that is from information contained solely in the values of the
conserved charges. We therefore show that all stationary correlations are exactly equal to their GGE predictions.
The proof is based on a general property satisfied by the correlation functions in the ground state of any physical
Hamiltonian, the cluster decomposition principle, which states that the correlations between two subsets of points
separated by a distance that tends to infinity become disconnected, i.e. [66]

lim
R!1

DY

i

�(xi)
Y

j

�(xj +R)
E
=

DY

i

�(xi)
EDY

j

�(xj)
E
. (1.2)

Therefore, we conclude that neither Gaussianity nor factorization of charge products in the initial state are necessary
conditions for the validity of the GGE conjecture. Contrarily, even in the much more general case of a quantum quench
from an arbitrary interacting pre-quench Hamiltonian, the GGE conjecture is still valid, this time as a consequence
of a fundamental property of the ground state correlations. The same reasoning extends to other cases, such as finite
temperature initial states, in which cluster decomposition applies. In the case of an arbitrary initial state that is not
the ground state of some physically acceptable Hamiltonian, the above requirement would not be generally satisfied,
the stationary correlations would retain memory of the initial correlations between conserved charges beyond their
maximally-disconnected part and the GGE conjecture would not apply.

We demonstrate these ideas in the context of two prototypical theories: a relativistic and a non-relativistic bosonic
field theory in one spatial dimension with no interaction after the quench. In the first model, we keep our exposition
as general as possible and show that our findings are insensitive to the form of the post-quench dispersion relation
(and so insensitive to relativistic invariance too) or other details of the particular quench and we identify the minimal
requirements for equilibration to occur and for the rest of our arguments to hold. In this way, it is clear that our
results are true for a wide range of physical systems that are equivalent to systems of coupled harmonic oscillators
with arbitrary couplings. In the second model, as a byproduct of our investigation, we obtain an analytical derivation
of earlier discovered numerical results [34] for the relaxation of density-density correlations in the case of free non-
relativistic bosons starting from an initial state with pointlike interactions (quantum quench in the Lieb-Liniger model
from positive to zero interaction). It turns out that the relaxation is a power-law in time and is related to the decay of
the initial four-point correlation function at large distances, which is governed by the Luttinger Liquid approximation
of the Lieb-Liniger model, allowing us to calculate the exponent of the power law from the Luttinger parameter K.

II. RELATIVISTIC BOSONIC FIELD THEORY

We consider the one-dimensional system of harmonic oscillators described by the Hamiltonian (in momentum space)

H =
1
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⌘
. (2.1)

As well-known, such a Hamiltonian may describe a relativistic free field theory, if !k =
p
k2 +m2 with particle mass

m, but we do not need to specify the exact form of the dispersion relation for our subsequent study. This Hamiltonian
will play the role of the post-quench Hamiltonian in our problem. Since it is free, the time-evolved field operator �
(in the Heisenberg picture) can be written in momentum space as
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and the conjugate momentum ⇡ as
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Here L is the system size and we assume periodic boundary conditions, so that the momenta are given by k = 2⇡n/L
with n integer (although this assumption is not essential). The creation-annihilation operators can therefore be
expressed in the following form which will be useful later

ak =

r
!k

2
�̃k(0) +

ip
2!k

⇡̃k(0), a†�k =

r
!k

2
�̃k(0)�

ip
2!k

⇡̃k(0). (2.4)

see also Cramer & Eisert 2011

A simple general condition

If we take a linear superposition of a finite number of eigenstates, the 
system will obviously oscillate forever 

Can we find some conditions for the initial state/Hamiltonian guaranteeing 
steady state and GGE/thermalization?



What about interacting integrable systems?

The calculations become immensely more complicated 

Two paradigmatic models:

Lieb-Liniger gas 

Quench dynamics of a Tonks-Girardeau gas released from a harmonic trap 3

not yet been established whether (and in which sense) an infinite time limit exists and, if yes,
how it is approached.

In order to overcome these limitations, in a recent letter [88] we presented a full analytic
solution of the nonequilibrium trap release dynamics in the limit of strong coupling, i.e. in the
Tonks-Girardeau regime [91]. This allowed us to understand that also the infinite time limit
should be handled with care: in the trap release dynamics, a stationary behavior is possible
because of the interference of the particles going around the circle L many times (see Fig. 1),
i.e. to observe a stationary value we must require vt � L (with v the expansion velocity of
the gas). This is very different from equilibration in standard global quenches where, in order
to avoid revival effects, the time should be such that the boundaries are never reached (i.e.
one first considers the TD limit L ! 1 and only after the infinite time limit t ! 1, which,
in finite systems, corresponds to the condition vt ⌧ L, see e.g. [39]). In the trap release
problem the revival scale is ⌧

rev

/ L2 (see also [92]) and so the infinite time limit in which a
stationary behavior can be achieved is t/L ! 1 provided t/L2 ! 0. In Ref. [88], we have
showed that, in the TD limit, the reduced density matrix of any finite subsystem converges
for long times (in the sense just explained) to the GGE one. This implies that any measurable
local observable will converge to the GGE predictions. In this manuscript, we extend the
previous letter [88] in several aspects. First of all, we give complete derivation of all results
in the GGE previously presented. Secondly, for many observables we will characterize the
full asymptotic time dependence and not restrict to the stationary results. As particularly
important new aspects absent in Ref. [88], we study the time evolution of the entanglement
entropies and we construct the GGE in terms of local integrals of motion.

The manuscript is organized as follows. In Sec. 2 we introduce the model under
investigation and the quench protocol. In Sec. 3 we calculate the time evolution of the two-
point correlation function and prove that for infinite time a stationary value is approached. We
also discuss the approach to the stationary value. In Sec. 4 we show that the stationary values
of all local observables are described by a GGE both in fermionic momentum occupation
numbers and in the local integrals of motion. In Sec. 5 we compute the density-density
correlation and in Sec. 6 the bosonic one-particle density matrix (Fourier transform of the
momentum distribution function). In Sec. 7 we move our attention to the entanglement
entropies. The trap release dynamics from a trapped gas to a larger trap is addressed in Sec.
8. Finally in Sec. 9 we draw our conclusions.

2. The Model and quench protocol

The Lieb-Liniger model describes a system of N identical bosons in one dimension (1D)
interacting via a pairwise Dirac-delta potential. In first quantization language, the Hamiltonian
is given by [89]

H
LL
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2

NX

j=1

@2

@x2

j

+ c
X

i 6=j

�(xi � xj), (1)

XXZ Spin chain
Entanglement evolution across defects in critical anisotropic Heisenberg chains 4

Figure 1. Graphical representation of the local quench considered in this paper: a spin-chain
is prepared in the ground-state of two disconnected halves that at time t = 0 are joined through
a defect bond (represented as a spring different from the others).

entanglement entropy since at each step of the algorithm one needs to reconstruct the reduced
density matrix and its spectrum. The manuscript is organized as follows. In Sec. 2 we present
the details of the model and of the numerical method. In Sec. 3 we report the time evolution
of the entanglement (von Neuman and Rényi) entropy. The simulations have been performed
for different values of the defect strength � and anisotropic parameter �, as well as for a few
chain lengths L. Finally in the last section we draw our conclusions.

2. The model, the local quench, and the method

We consider the anisotropic XXZ Heisenberg chain with L sites and a defect � in the center
defined by the Hamiltonian

H =

L�1X
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J
i

⇥
Sx

i

Sx

i+1 + Sy

i

Sy

i+1 +�Sz

i

Sz

i+1

⇤
, (6)
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J
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(
1, i 6= L/2,

1 + �, i = L/2.
(7)

and we impose open boundary conditions on the sites i = 1 and i = L. Here S↵

i

are the
local spin-1/2 operators, i.e. in terms of Pauli matrices S↵

i

= �↵

i

/2. In the homogenous
case with � = 0, the model is integrable by means of Bethe ansatz [71] allowing for an exact
characterization of the ground state and all excited states. For |�|  1 the model is gapless,
conformal (for � 6= �1) and described by a Luttinger liquid field theory with central charge
c = 1 and Luttinger parameter K = ⇡/(2 arccos�), while for |�| > 1 it acquires a gap.
For � 6= 0, although the model is Bethe ansatz solvable, it is still not known how to use
integrability to calculate effectively the entanglement entropies in the gapless phase, in spite
of several attempts in the literature [72] (in the gapped phase instead some exact results are
known [42, 73]).

Via a Jordan-Wigner transformation, apart from boundary terms, the chain in Eq. (6) is
mapped into a lattice model of spinless fermions c

j

(which satisfy canonical anti-commutation
relations {c
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, c†
m

} = �
l,m

) with Hamilltonian
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Entanglement evolution across defects in critical anisotropic Heisenberg chains 4

Fig. 1. We tackle the problem considering the evolution of an open chain with one modified
bond in the center and using the adaptive time-dependent density matrix renormalization
group (tDMRG) [70]. This numerical method is well suited for the calculation of the
entanglement entropy since at each step of the algorithm one needs to reconstruct the reduced
density matrix and its spectrum. The manuscript is organized as follows. In Sec. 2 we present
the details of the model and of the numerical method. In Sec. 3 we report the time evolution
of the entanglement (von Neuman and Rényi) entropy. The simulations have been performed
for different values of the defect strength � and anisotropic parameter �, as well as for a few
chain lengths L. Finally in the last section we draw our conclusions.

2. The model, the local quench, and the method

We consider the anisotropic XXZ Heisenberg chain with L sites and a defect � in the center
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with
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and we impose open boundary conditions on the sites i = 1 and i = L. Here S↵

i

are the local
spin-1/2 operators, i.e. in terms of Pauli matrices S↵

i
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i

/2. In the translational invariant
case with � = 0, the model is integrable by means of Bethe ansatz [71] allowing for an exact
characterization of the ground state and all excited states. For |�|  1 the model is gapless,
conformal (for � 6= �1) and described by a Luttinger liquid field theory with central charge
c = 1 and Luttinger parameter K = ⇡/(2 arccos�), while for |�| > 1 it acquires a gap. For
� 6= 0, although the model is Bethe ansatz solvable, it is still not known how to calculate
effectively the entanglement entropies in the gapless phase, in spite of of several attempts in
the literature [72] (in the gapped phase instead some exact results are known [42, 73]).

Via a Jordan-Wigner transformation, apart from boundary terms, the chain in Eq. (5) is
mapped into a lattice model of spinless fermions c
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(which satisfy canonical anti-commutation
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which has attractive nearest-neighbor interaction for � < 0 and repulsive for � > 0. The
case � = 0 corresponds to free spinless fermion (or XX chain).

In this manuscript we consider the non-equilibrium situation in which the chain is
initially prepared in the relative ground states of two equal parts of length L/2, i.e. in the
global ground-state of the Hamiltonian (5,6) with �0 = �1. We fix L to be an integer multiple
of 4, so that the ground state of each of the two initially separated parts is non-degenerate and
has zero magnetization (i.e. the corresponding fermion lattice is half-filled). At time t = 0,



Quench dynamics of XXZ chain

We developed a method to calculate expectation values in the GGE 

0 2 4 6 8
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

k = 1
k = 2
k = 3

|Neel,θ⟩ ⟶ Δ = 2θ = 0°

⟨σ
x jσ

x j+
k⟩ t

t
0 2 4 6 8

-1

-0.5

0

0.5

1

k = 1
k = 2
k = 3

|Neel,θ⟩ ⟶ Δ = 2θ = 0°

⟨σ
z jσ

z j+
k⟩ t

t

Fagotti, Collura, Essler, PC 2013

Analytics vs Numerics for the Neel →Δ quench: 

Similar agreement with other initial states and final H



This is not the end :(

A new method to compute the exact time evolution developed
Essler, Caux ‘13

Particularly effective to compute the long-time limit

Brockmann, Wouters, Fioretto, De Nardis, Vlijm, Caux ‘14

Applied to XXZ chain for the Neel quench:

Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain 23

presented in Ref. [80] (for the next-to-nearest-neighbor correlators). More details on the

expansion of the correlators are given in Appendix E. We find that
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We noticed in Eqs (6.8) that, for the densities, the di↵erence between GGE and the
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are consistent with the analytical prediction in Eq. (6.12), which is indicated by the
red line.
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FIG. 1: Numerical simulation of the time evolution of correlation functions (a) h�z
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starting from the dimer initial state (4) for anisotropy � = 4 as obtained by iTEBD (red lines). In the shaded region
the results are not reliable. The horizontal lines show the GGE prediction [37] (blue dotted lines) and the prediction

of the overlap TBA of the quench action approach (black dashed lines).
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where [a ? b](�) =
R
⇡/2
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d�0a(� � �0)b(�0) denotes the
convolution and µ is a Lagrange multiplier introduced to
fix the overall magnetization to zero. By examining the
g
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(�), we obtained for both initial states that log ⌘
n

⇠
⌘ n2 for large n. This implies that the higher strings are
suppressed as / e�⌘n

2

, so the infinite set of equations
can be truncated to relatively few equations.

Once we have the numerical solution for ⌘
n

, we can use
them in Eqs. (7) for the densities which can be solved ef-
ficiently by iteration. The precision of the solution was
improved by extrapolation in the discretization used in
the numerical solutions of the integral equations. For fur-
ther technical details cf. our future publication [59].

Sum rule from initial state normalization.— A non-
trivial check of the saddle point string densities {⇢⇤
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} ob-
tained above is provided by the computation of the norm
of the initial state in the TDL, i.e.
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where the quench action Eq. (10) is evaluated via Eqs.
(11,12) on the saddle point solution. This is an integral
sum rule for the string densities which does not follow
trivially from the oTBA solution. If it is violated then
the spectral weight of the saddle point solution is zero
in the TDL. Plugging in our numerical solution for dif-
ferent values of � for both initial states we found that
while both the overlap (12) and the entropy are of order

O(10�1), their di↵erence, i.e. the quench action (10) is
of order O(10�8) and shrinks while increasing the num-
ber of equations included, therefore it is interpreted as
a numerical error of the truncated oTBA system. This
provides a very strong evidence that we indeed found the
correct saddle point solution.

Conserved charges.— The first observables we com-
puted are expectation values of the conserved charges in
the steady state. They must be equal to the expectation
values in the initial states, providing another important
check of our saddle point solution. Conserved charges
were evaluated in the symmetric Néel state | N

0

i in Refs.
[35, 36] and we used both these methods to determine
the expectation values in the symmetrized dimer state
| D

0

i. For both initial states we calculated the first six
non-zero charges, {hQ̂

2m

i}
m=1,...,6

, and compared with
the expectation values computed from Eq. (9). We found
agreement up to more than 8 digits in all cases, providing
a further stringent test of the oTBA solution.

Correlation functions in the steady state.— Using the
oTBA solution, we computed various short distance cor-
relation functions in the steady state by making use of
recent results of two of the present authors, who provided
exact formulas for the 2-point correlation functions in
terms of the string densities [60]. We compared these val-
ues with the large time prediction of a real time numerical
simulation based on the infinite size time evolving block
decimation (iTEBD) algorithm [61, 62]. Translational in-
variance of the initial states (3),(4) was implemented by
averaging over the two components of the states, which
is valid because the o↵-diagonal contributions vanish in
the TDL. Our real time simulation results are consistent
with those obtained in Ref. [37].

The time evolutions of three di↵erent correlators for
the quench starting from the dimer state are shown in
Fig. 1 for � = 4. The correlation functions converge
to stationary values but the simulations break down for
large times indicated by the shaded regions. The region

The difference is more evident 
starting from the dimer state
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and (b) h�z

1�z
3i. The numerical data (indicated by the black line, obtained in Ref. [43])

are consistent with the analytical prediction in Eq. (6.12), which is indicated by the
red line.
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starting from the dimer initial state (4) for anisotropy � = 4 as obtained by iTEBD (red lines). In the shaded region
the results are not reliable. The horizontal lines show the GGE prediction [37] (blue dotted lines) and the prediction

of the overlap TBA of the quench action approach (black dashed lines).

for the Néel and Dimer states, respectively, and in
both cases gN,D

n

(�) =
P

n

j=1

gN,D

1

⇥
�+ i⌘

2

(n+ 1� 2j)
⇤
for

higher strings (n > 1).
The extremum of S({⇢

n

(�)}) is now found through the
standard treatment [52], leading to the integral equations
for the functions ⌘

n

(�) = ⇢h
n

(�)/⇢
n

(�)

log ⌘
n

(�) = g
n

(�) + µn+
1X

m=1

[T
nm

? log(1 + ⌘�1

m

)](�) ,

(14)

where [a ? b](�) =
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d�0a(� � �0)b(�0) denotes the
convolution and µ is a Lagrange multiplier introduced to
fix the overall magnetization to zero. By examining the
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(�), we obtained for both initial states that log ⌘
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⌘ n2 for large n. This implies that the higher strings are
suppressed as / e�⌘n
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, so the infinite set of equations
can be truncated to relatively few equations.

Once we have the numerical solution for ⌘
n

, we can use
them in Eqs. (7) for the densities which can be solved ef-
ficiently by iteration. The precision of the solution was
improved by extrapolation in the discretization used in
the numerical solutions of the integral equations. For fur-
ther technical details cf. our future publication [59].

Sum rule from initial state normalization.— A non-
trivial check of the saddle point string densities {⇢⇤
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of the initial state in the TDL, i.e.
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where the quench action Eq. (10) is evaluated via Eqs.
(11,12) on the saddle point solution. This is an integral
sum rule for the string densities which does not follow
trivially from the oTBA solution. If it is violated then
the spectral weight of the saddle point solution is zero
in the TDL. Plugging in our numerical solution for dif-
ferent values of � for both initial states we found that
while both the overlap (12) and the entropy are of order

O(10�1), their di↵erence, i.e. the quench action (10) is
of order O(10�8) and shrinks while increasing the num-
ber of equations included, therefore it is interpreted as
a numerical error of the truncated oTBA system. This
provides a very strong evidence that we indeed found the
correct saddle point solution.

Conserved charges.— The first observables we com-
puted are expectation values of the conserved charges in
the steady state. They must be equal to the expectation
values in the initial states, providing another important
check of our saddle point solution. Conserved charges
were evaluated in the symmetric Néel state | N

0

i in Refs.
[35, 36] and we used both these methods to determine
the expectation values in the symmetrized dimer state
| D

0

i. For both initial states we calculated the first six
non-zero charges, {hQ̂

2m

i}
m=1,...,6

, and compared with
the expectation values computed from Eq. (9). We found
agreement up to more than 8 digits in all cases, providing
a further stringent test of the oTBA solution.

Correlation functions in the steady state.— Using the
oTBA solution, we computed various short distance cor-
relation functions in the steady state by making use of
recent results of two of the present authors, who provided
exact formulas for the 2-point correlation functions in
terms of the string densities [60]. We compared these val-
ues with the large time prediction of a real time numerical
simulation based on the infinite size time evolving block
decimation (iTEBD) algorithm [61, 62]. Translational in-
variance of the initial states (3),(4) was implemented by
averaging over the two components of the states, which
is valid because the o↵-diagonal contributions vanish in
the TDL. Our real time simulation results are consistent
with those obtained in Ref. [37].

The time evolutions of three di↵erent correlators for
the quench starting from the dimer state are shown in
Fig. 1 for � = 4. The correlation functions converge
to stationary values but the simulations break down for
large times indicated by the shaded regions. The region

The difference is more evident 
starting from the dimer state
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What is missing here
The approach to the steady state shows very interesting features 
(light-cone spreading of correlations)

3

FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal
propagates with increasing time to larger distances. The ex-
perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-
ical simulation for an infinite, homogeneous system at zero
temperature (continuous line). Our analytical model (dashed
line) also qualitatively reproduces the observed dynamics. In-
set: Experimental data displayed as a colormap, revealing the
propagation of the correlation signal with a well defined ve-
locity. The experimental values result from the average over
the central N sites of more than 1000 chains, where N equals
80% of the length of each chain. Error bars represent the
standard deviation.

interference between propagating and bound quasiparti-
cle pairs (Eq. (1)). A comparison of the experimental
velocities with the ones obtained from numerical simu-
lations (Fig. 3b) shows agreement within the error bars.
The measured velocities can also be compared with two
limiting cases: On the one hand, they are significantly
larger than the spreading velocity of non-interacting par-
ticles, v = 4 Jalat/~, and twice the velocity of sound
in the superfluid phase [24]; on the other hand, they re-
main below the maximum velocity predicted by our e�ec-
tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the
propagation velocity for the quenches to U/J = 5.0, 7.0 and
9.0. The time of the maximum of the correlation signal is
obtained from fits to the traces Cd(t) (circles). Error bars
represent the 68% confidence interval of these fits. We then
extract the propagation velocities from weigthed linear fits
restricted to 2  d  6 (lines). The data for U/J = 5.0 and
7.0 have been oset horizontally for clarity. b, Comparison
of the experimental velocities (circles) to the ones obtained
from numerical simulations for an infinite, homogeneous sys-
tem at zero temperature (shaded area). The shaded area and
the vertical error bars denote the 68 % confidence interval of
the fit. The horizontal error bars represent the uncertainty
due to the calibration of the lattice depth. The black line cor-
responds to the bound predicted by our eective model (the
shading indicates the break down of this model). The arrows
mark the maximum velocity expected in the non-interacting
case (left) and the asymptotic value derived from our model
when U/J ! 1 (right).

bound (Fig. 3b). This bound equals 6 Jalat/~ in the limit
U/J � ⇥, corresponding to doublons and holons propa-
gating with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
tal observation of an e�ective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep

M. Cheneau et al, 
Nature 481, 484 (2012)
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tem at zero temperature (shaded area). The shaded area and
the vertical error bars denote the 68 % confidence interval of
the fit. The horizontal error bars represent the uncertainty
due to the calibration of the lattice depth. The black line cor-
responds to the bound predicted by our eective model (the
shading indicates the break down of this model). The arrows
mark the maximum velocity expected in the non-interacting
case (left) and the asymptotic value derived from our model
when U/J ! 1 (right).

bound (Fig. 3b). This bound equals 6 Jalat/~ in the limit
U/J � ⇥, corresponding to doublons and holons propa-
gating with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
tal observation of an e�ective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep
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Thank you for your attention

Non-equilibrium dynamics of isolated systems 
represent a theoretical and experimental challenge 
raising many fundamental questions in many-body 
quantum mechanics

Conclusions


