
	

	

G. Calucci a), S. Salvinia) and D. Treleani a,b)	


	

	

	

	

	

	

a Physics Department, University of Trieste, Italy	

b INFN Trieste, Italy	


Daniele	  Treleani,	  Univ.	  of	  Trieste	  and	  INFN	   1	  

Double Parton Interactions in pA collisions  
and Partonic Correlations 
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Multiple Parton Interactions have been introduced to solve the unitarity problem generated by 
the fast raise of the inclusive hard cross sections at small x. At small x the hard cross section can 
in fact become larger than the total inelastic cross section. 	

	

For a given the final state, multiple parton interactions are the processes which maximize the 
incoming parton flux	
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Unitarity is restored because the inclusive cross section counts the multiplicity of 
interactions. In this way, when the average multiplicity of interactions is large, the 
inclusive cross section is no more bounded by the value of the total inelastic cross 
section.	


A simplest model for Double Parton Interactions 
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The simplest case is Double Parton Scattering. The incoming parton flux is maximal when the hard 
component of the interaction is disconnected and, in the case of the DPS, one thus obtains the 
geometrical picture here below, where the non-perturbative components are factorized into functions 
which depend on two fractional momenta and on the relative transverse distance b between the two 
interaction points	


When neglecting spin and color, the inclusive double parton-scattering cross-section, for two 
parton processes A and B in a pp collision, is thus given by	


Which, with leads to the “pocket formula” of the cross section 
utilized in the experimental analysis:	
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Comparison with Experiment 

In the “pocket formula” all unknowns are summarized in the value of a single quantity σeff	


Formalism of the double parton scattering

A bit of (simplified) theory of the double parton scattering..

The cross section for a generic process that involve DPS can be written:

σAB = m
2
σAσB

σeff
where σeff is the effective area parameter for the DPS

σeff ≈ 20 mb

How to measure it?

Evaluating the fraction of DPS events

that occur in a given physics channel

wrt the single chain processes

Theory says that it’s independent on the

collision energy and the process type

a high energy phase for the LHC extends the study of the energy dependence

with increasing energy, partons with lower x start to be relevant and detectable
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TABLE V: Systematic (δsyst), statistic (δstat) and total δtotal uncertainties (in %) for σeff in the three pjet2T bins.

pjet2T Systematic uncertainty sources δsyst δstat δtotal
(GeV) fDP fDI εDP/εDI JES Rcσhard (%) (%) (%)
15 – 20 7.9 17.1 5.6 5.5 2.0 20.5 3.1 20.7
20 – 25 6.0 20.9 6.2 2.0 2.0 22.8 2.5 22.9
25 – 30 10.9 29.4 6.5 3.0 2.0 32.2 2.7 32.3

The measured σeff values in the different pjet2T bins
agree with each other within their uncertainties, how-
ever a slow decrease with pjet2T can not be excluded. The

σeff value averaged over the three pjet2T bins is

σave
eff = 16.4± 0.3(stat)± 2.3(syst) mb. (16)
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FIG. 11: Effective cross section σeff (mb) measured in the
three pjet2T intervals.

B. Models of parton spatial density

In this section we study the limits that can be obtained
on the parameters of three phenomenological models of
parton spatial density using the measured effective cross
section (16). In the discussion below we follow a sim-
ple classical approach. For a given parton spatial density
inside the proton or antiproton ρ(r), one can define a
(time-integrated) overlap O(β) between the parton dis-
tributions of the colliding nucleons as a function of the
impact parameter β [10]. The larger the overlap (i.e.
smaller β), the more probable it is to have at least one
parton interaction in the colliding nucleons. The single
hard scattering cross sections (for example, γ+jets or di-
jet production) should be proportional to O(β) and the
cross section for the double parton scattering is propor-
tional to the squared overlap, both integrated over all
impact parameters β [28, 36]:

σeff =
[
∫

∞

0
O(β) 2πβ dβ]2

∫

∞

0
O(β)2 2πβ dβ

. (17)

First, we consider the “solid sphere” model with a con-
stant density inside the proton radius rp. In this model,
the total hard scattering cross section can be written

as σhard = 4πr2p and σeff = σhard/f . Here f is the
geometrical enhancement factor of the DP cross sec-
tion. It is obtained by solving Eq. (17) for two overlap-
ping spheres with a boundary conditions that the par-
ton density ρ(r) = constant for r ≤ rp and ρ(r) = 0
for r > rp and found to be f = 2.19. The role of
the enhancement factor can be seen better if we rewrite
Eq. (1) as σDP = fσAσB/σhard. The harder the single-
parton interaction is the more it is biased towards the
central hadron-hadron collision with a small impact pa-
rameter, where we have a larger overlap of parton den-
sities and, consequently, higher probability for a sec-
ond parton interaction [5]. Using the measured σeff ,
for the solid sphere model we extract the proton ra-
dius rp = 0.53 ± 0.06 fm and proton rms-radius Rrms =
0.41 ± 0.05 fm. The latter is obtained from averaging
r2 as R2

rms ≡
∫

∞

0
r24πr2ρ(r)dr = 4π

∫

∞

0
ρ(r)r4dr [37].

The results are summarized in the line “Solid Sphere”
of Table VI. The Gaussian model with ρ(r) ∝ e−r2/2a2

and exponential model with ρ(r) ∝ e−r/b have been also
tested. The relationships between the scale parameter
(rp, a or b) and rms-radius for all the models are given in
Table VI. The relationships between the effective cross
section σeff and parameters of the Gaussian and expo-
nential models are taken from [38], neglecting the terms
that represent correlations in the transverse space. The
scale parameters and rms-radii for both models are also
given in Table VI. In spite of differences in the models,
the proton rms-radii are in good agreement with each
other, with average values varied as 0.41− 0.47 and with
about 12% uncertainty. On the other hand, having ob-
tained rms-radius from other sources (for example, [39])
and using the measured σeff , the size of the transverse
correlations [38] can be estimated.

IX. SUMMARY

We have analyzed a sample of γ + 3 jets events col-
lected by the D0 experiment with an integrated lumi-
nosity of about 1 fb−1 and determined the fraction of
events with hard double parton scattering occurring in
a single pp̄ collision at

√
s = 1.96 TeV. These fractions

are measured in three intervals of the second (ordered
in pT ) jet transverse momentum pjet2T and vary from

0.466± 0.041 at 15 ≤ pjet2T ≤ 20 GeV to 0.235± 0.027 at

25 ≤ pjet2T ≤ 30 GeV.

In the same three pjet2T intervals, we calculate an ef-

D0 Collaboration, Phys.Rev. D81 (2010) 052012	
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Distributions of x are plotted in Figs. 20(a) and 20(b), along with a prediction obtained by 
applying the DS < 1.2 selection to the admixture 90% MIXDP+10% PYTHIA. 	

No systematic deviation of the DP rate vs x, and thus no x dependence to σeff, is apparent 
over the x range accessible to this analysis (0.01 – 0.40 for the photon+jet scattering, 
0.002–0.20 for the dijet scattering).	


F. Abe et al. [CDF Collaboration], Phys. Rev. D 56, 3811(1997).	


Dependence of σeff on x  	
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R.Maciula and A.Szczurek,	

Phys. Rev. D87, 074039	


distribution for D0D0 ( !D0 !D0 ) is much flatter compared to

the D0 !D0 one that shows a pronounced maximum at
’D0 !D0 ¼ 180" (mostly from pair creation) and ’D0 !D0 ¼
0" (mostly from gluon splitting) [5]. This qualitative dif-
ference is, in our opinion, a model-independent proof of
the dominance of DPS effects in the production of D0D0

( !D0 !D0 ).

C. DPS c !cc !c production and inclusive
charmed meson distributions

Since the DPS cross section is very large, it is also very
important to look at the DPS c !cc !c contribution to inclusive
charmed meson spectra. Let us consider, for example,
transverse momentum distribution of a charmed Di meson.
The corresponding DPS c !cc !c contribution can be written as
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FIG. 11 (color online). Distribution in the azimuthal angle ’D0D0 between both D0’s. The left panel shows dependence on UGDFs,
while the right panel illustrates dependence of the result for the KMR UGDF on the factorization/renormalization scales.
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PRODUCTION OF c !cc !c IN DOUBLE-PARTON . . . PHYSICAL REVIEW D 87, 074039 (2013)
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σeff= 15 mb	
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The the “pocket formula” of the inclusive cross-section has thus shown to be able to describe 
the experimental results of the direct search of double parton collisions in rather different 
kinematical regimes with a value of σeff compatible with a universal constant, while the study of 
CDF, of the dependence of σeff on the fractional momenta of the incoming partons, is again 
compatible with a value of σeff independent on x. 	

 
 
In the simples model, not inconsistent with present experimental evidence, DPS are therefore 
given by the disconnected contribution, which maximizes the incoming parton flux at small x, 
and leads to the “pocket formula” utilized in the experimental analyses, with a universal value 
of σeff	


b
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b
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One may write the double parton distribution functions as	


where f is normalized to one and the transverse scales, characterizing f, may still 
depend on fractional momenta. 	


1

1. DOUBLE PARTON CROSS SECTION IN pD COLLISIONS

σpD
double − σpD

2,0 = σpD
1,1;D + σpD
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σpD
double is the double parton scattering cross section in proton-deuteron collisions. σpD

2,0 is the
contribution to the cross section where only a single target nucleon undergoes a double parton
collision, while there is no large momentum transfer exchange with the second nucleon; σpD

1,1;D
and σpD

1,1;I are respectively the diagonal and the off diagonal contributions to the cross section,
where both target nucleons interact with large momentum exchange. Explicitly:
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 σeff and partonic correlations 

In the simplest case one would have Kxx’=1 which, after integrating on b, would be 
the case of a Poissonian multi-parton distribution in multiplicity. 	
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All new information on the hadron structure	

is thus summarized in the effective cross section	


In pp one thus has	


typical transverse interaction area	


correlations in multiplicity	


effective cross section	


4

ΨD(Z; pt) = (2π)3/2
�

1

2MD

�
Z

2
M

2
D +

2

Z
m

2
t

�

× ψNR

�
1

4M2
D

�
Z

2
M

2
D +

2

Z
m

2
t

�2
−m

2

�
(25)

ψNR(�p) =
φD(�p)�
Ep(2π)3/2

(26)

σpp (A,B)
double (x1, x

�
1, x2, x

�
2) =

m

2
Kx1x2Kx�

1x
�
2
G(x1)σ̂A(x1, x

�
1)G(x�1)

×G(x2)σ̂B(x2, x
�
2)G(x�2)

�
fx1x2(b)fx�

1x
�
2
(b)db

=
m

2

Kx1x2Kx�
1x

�
2

πΛ2(x1, x�1, x2, x
�
2)

σA(x1, x
�
1)σB(x2, x

�
2)

�
fx1x2(b)fx�

1x
�
2
(b)db =

1

πΛ2(x1, x�1, x2, x
�
2)

(27)

�
fx1x2(b)d

2
b = 1 (28)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(29)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(30)

σpD
1,1;I(x1, x2, x

�
1, x

�
2)

σpD
1,1;D(x1, x2, x

�
1, x

�
2)

=

� ΨD(Z,0)Ψ∗
D(2−Z�,0)

Z(2−Z�) δ(Z � − Z + x
�
1 − x

�
2)dZdZ

�

G(x�1)G(x�2)|ΨD(1, 0)|2

×
�

fx1x2(b)Ĥ
�
x
�
1

Z
,
x
�
2

Z � ; b

�
Ĥ

�
x
�
2

2− Z
,

x
�
1

2− Z � ; b

�
db (31)

�
|ΨD(Z;B)|2 1

Z(2− Z)
dZdB = 1 (32)

σpD
2,0 (x1x

�
1x2x

�
2) =

1

σeff (x1x�1x2x
�
2)

� �
σW
pp (x1, x

�
1/Z) + σW

pn(x1, x
�
1/Z)

�

× σJJ
pN (x2, x

�
2/Z)×D(Z,B)dZdB (33)
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1

1. DOUBLE PARTON CROSS SECTION IN pD COLLISIONS

σpD
double − σpD

2,0 = σpD
1,1;D + σpD

1,1;I (1)

dσ̃1
dydpt

=
dσS
dydpt

− dσS
dydpt

σS
σeff

(2)

σpD
double is the double parton scattering cross section in proton-deuteron collisions. σpD

2,0 is the

contribution to the cross section where only a single target nucleon undergoes a double parton

collision, while there is no large momentum transfer exchange with the second nucleon; σpD
1,1;D

and σpD
1,1;I are respectively the diagonal and the off diagonal contributions to the cross section,

where both target nucleons interact with large momentum exchange. Explicitly:

σpD
2,0 =

�
Γ(x1, x2; b)σ̂(x1x

�
1)σ̂(x2x

�
2)Γ

�
x
�
1

Z
,
x
�
2

Z
; b

� |ΨD(Z,B)|2

Z(2− Z)
dZ dB db

σpD
1,1;D =

�
Γ(x1, x2; b)σ̂(x1x

�
1)σ̂(x2x

�
2)Γ

�
x
�
1

Z
; b1

�
Γ
�

x
�
2

2− Z
; b2

�

× |ΨD(Z,B)|2

Z(2− Z)
δ(B − b1 + b2 − b)dZ dB db1 db2 db (3)

σpD
1,1;I =

�
Γ(x1, x2; b)σ̂(x1x

�
1)σ̂(x2x

�
2)H̃

�
x
�
1

Z
,
x
�
2

Z � ; b1, b2 −B

�
H̃

�
x
�
2

2− Z
,

x
�
1

2− Z � ; b2, b1 −B

�

×ΨD(Z,B)

Z

Ψ∗
D(2− Z

�
, B)

2− Z � δ(B + b2 − b− b1)δ(Z
� − Z + x

�
1 − x

�
2)dZ dZ

�
dB db1 db2 db

σpD
1,1;I(x1, x2, x

�
1, x

�
2) � G(x1, x2) σ̂(x1x

�
1)σ̂(x2x

�
2)

�
fx1x2(b)H

�
x
�
1

Z
,
x
�
2

Z � ; b

�
H

�
x
�
2

2− Z
,

x
�
1

2− Z � ; b

�
db

×ΨD(Z, 0)Ψ∗
D(2− Z

�
, 0)

Z(2− Z �)
δ(Z � − Z + x

�
1 − x

�
2)dZdZ

�

Γ(x1, x2; b) = G(x1, x2)fx1x2(b), G(x1, x2) = Kx1x2G(x1)G(x2) (4)

�
fx1x2(b)d

2
b = 1 → G(x1, x2) ≡ average multiplicity of pairs of partons with fractional momenta

x1 and x2, while G(x) is the average multiplicity of partons with fractional momentum x. One

may thus write

Kx1x2 =
�n(n− 1)�x1,x2

�n�x1�n�x2

(5)
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If partons are not correlated in 
multiplicity one has	


2

Kx1x2 = 1 (6)

σpD
2,0 (x1, x2, x

�
1, x

�
2) � 2 σpp

double(x1, x2, x
�
1, x

�
2)

σpD
1,1;D(x1, x2, x

�
1, x

�
2) � Kx1x2σ

pp
single(x1, x

�
1)σ

pp
single(x2, x

�
2)× |ΨD(1, 0)|

2

σpD
1,1;I(x1, x2, x

�
1, x

�
2) � Kx1x2G(x1)G(x2) σ̂(x1x

�
1)σ̂(x2x

�
2)

�
fx1x2(b)Ĥ

�
x
�
1

Z
,
x
�
2

Z � ; b

�

×Ĥ

�
x
�
2

2− Z
,

x
�
1

2− Z � ; b

�
db× ΨD(Z, 0)Ψ∗

D(2− Z
�
, 0)

Z(2− Z �)
δ(Z � − Z + x

�
1 − x

�
2)dZdZ

�

Ĥ(x�1, x
�
2; b) ≡

�
H̃(x�1, x

�
2; b1, b1 − b)db1 (7)

Ĥ(x�1, x
�
1; 0) = G(x�1) (8)

σpD
1,1;I(x1, x2, x

�
1, x

�
1) � Kx1x2G(x1)G(x2) σ̂(x1x

�
1)σ̂(x2x

�
1)

×
�

fx1x2(b)Γ
2(x�1, b)db× |ΨD(1, 0)|

2

O(R2
/R

2
D) ≈ 7× 10−2 (9)

λx1x2 =
��

b
2
fx1x2(b) db

�1/2
(10)

O(λ2
/R

2) (11)

σpp
double (12)

H̃ (13)

Limiting case 

In this way one however obtains   σeff= πΛ2=32 mb, which is about a factor 2 too large 
as compared with available experimental evidence    	


If partons are not correlated in transverse coordinates one may write:	


Either K is NOT equal to 1 or πΛ2 is NOT equal to 32 mb or both	


4

ΨD(Z;B) ΨD(Z; pt) (26)

The function ΨD(p) is hence finally expressed in terms of light cone variables through the
non relativistic deuteron wave function ψNR(�p2) as �p2

ΨD(Z; pt) = (2π)3/2
�

1

2MD

�Z
2
M2

D +
2

Z
m2

t

�

× ψNR

�
1

4M2
D

�Z
2
M2

D +
2

Z
m2

t

�2
−m2

�
(27)

ψNR(�p) =
φD(�p)�
Ep(2π)3/2

(28)

σpp (A,B)
double (x1, x

�
1, x2, x

�
2) =

m

2
Kx1x2Kx�

1x
�
2
G(x1)σ̂A(x1, x

�
1)G(x�1)

×G(x2)σ̂B(x2, x
�
2)G(x�2)

�
fx1x2(b)fx�

1x
�
2
(b)db

=
m

2

Kx1x2Kx�
1x

�
2

πΛ2(x1, x�1, x2, x
�
2)

σA(x1, x
�
1)σB(x2, x

�
2)

�
fx1x2(b)fx�

1x
�
2
(b)db =

1

πΛ2(x1, x�1, x2, x
�
2)

(29)

�
fx1x2(b)d

2b = 1 (30)

Γ(x; b) = G(x)fx(b),

�
fx(b)d

2b = 1, f̃x(q) =

�
eiq·bfx(b)d

2b (31)

Γ(x; b) = G(x)fx(b),

�
fx(b)d

2b = 1, fx1,x2(b) =

�
fx1(b

�)fx2(b− b�)d2b� (32)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(33)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(34)
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2b = 1 (30)
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fx(b)d

2b = 1, f̃x(q) =
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eiq·bfx(b)d

2b (31)

Γ(x; b) = G(x)fx(b),

�
fx(b)d

2b = 1, fx1,x2(b) =

�
fx1(b

�)fx2(b− b�)d2b� (32)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(33)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x�1, x2, x
�
2)

Kx1x2Kx�
1x

�
2

(34)

Two gluon form factor 

a)	  

b)	  



Daniele	  Treleani,	  Univ.	  of	  Trieste	  and	  INFN	   12	  

The experimental indication is that the effective cross section depends only 
weakly on fractional momenta.	

	


	
 	
 	
 	
weak dependence of Λ and K on fractional momenta	

	

Since all new information on the hadron structure is summarized by a single 
quantity, 	

	


	
 	
 	
 	
the effective cross section does not provide enough 
	
 	
 	
 	
information to discriminate between Λ and K.	


	

To obtain additional information on multi-parton correlations one may study 
MPI in pA collisions.	

In the case of a double parton interaction, in a collision of a proton with a 
nucleus, the effects of longitudinal and transverse correlations are in fact 
different when a single nucleon or both target nucleons participate in the hard 
process.	

	  

4

�
fx1x2(b)fx�

1x�
2
(b)db =

1
πΛ2(x1, x

�
1, x2, x

�
2)

(23)

σeff (x1, x
�
1, x2, x

�
2) =

πΛ2(x1, x
�
1, x2, x

�
2)

Kx1x2Kx�
1x�

2

(24)

σpD
1,1;I(x1, x2, x

�
1, x

�
2)

σpD
1,1;D(x1, x2, x

�
1, x

�
2)

=

� ΨD(Z,0)Ψ∗
D(2−Z�,0)

Z(2−Z�) δ(Z � − Z + x
�
1 − x

�
2)dZdZ

�

G(x�1)G(x�2)|ΨD(1, 0)|2

×
�

fx1x2(b)Ĥ
�

x
�
1

Z
,
x
�
2

Z � ; b

�
Ĥ

�
x
�
2

2− Z
,

x
�
1

2− Z � ; b

�
db (25)

�
|ΨD(Z;B)|2 1

Z(2− Z)
dZdB = 1 (26)
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DPS in p-A collisions 

~A	   ~A4/3	  

Additional information can be obtained from DPS in p-A collisions:	
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In the inclusive cross section for WJJ production, σpA(WJJ), one identifies three different
contributions:

σpA(WJJ) = σpA
S (WJJ) + σpA

D (WJJ), where σpA
D (WJJ) = σpA

D (WJJ)
��
1
+ σpA

D (WJJ)
��
2

The first term, σpA
S (WJJ), represents the processes where WJJ is produced by a single parton

collision while the contribution due to DPS, σpA
D (WJJ), is expressed, according with Eq.(7),

by the sum of two terms, which distinguish whether the DPS takes place against a single,
σpA
D (WJJ)

��
1
, or against two different target nucleons, σpA

D (WJJ)
��
2
.

The contribution due to a single parton collisions, σpA
S (WJJ), can be evaluated according to

the standard rules, keeping into account the different contributions due to the interaction with a
target proton or neutron and making use of the parton distributions of the bound nucleons[37, 38].
This term does not provide much additional information on hadron structure and it can be
considered as a known quantity.

The explicit expression of the contribution due to a double parton scattering in a collision
with a single target nucleon, σpA

D (WJJ)
��
1
, is

σpA
D (WJJ)

��
1
=

1

σeff

�
Zσp[p]

S (W )σp[p]
S (JJ) + (A− Z)σp[n]

S (W )σp[n]
S (JJ)

�
(13)

where σp[p],p[n]
S (W ) are the single scattering cross sections for inclusive production of a W

in a collision of a proton with a bound proton or with a bound neutron, while σp[p],p[n]
S (JJ)

is, analogously, the single scattering cross section to produce a pair of jets. The effective cross
section, σeff , has been assumed to be a universal constant. A is the atomic mass number and Z

the nuclear charge. Analogously to the term due to a single parton collisions, σpA
S (WJJ), also

σpA
D (WJJ)

��
1

is therefore expressed fully explicitly in terms of known quantities and is evaluated
with the standard rules of of the QCD-parton model, with the help of the parton distributions of
the bound nucleons. The contribution due to a double parton scattering, in hard collisions with
a single target nucleon, does not have much to add to the information on the hadron structure
already available from double parton interactions in proton-proton collisions and also this term
can thus be regarded as a known contributions to the cross section.

All novel information on hadron structure, provided by DPS in p -A collisions, is to be found
in the last term, σpA

D (WJJ)
��
2
, where two different nucleons participate to the double parton

interaction. According with the discussion in the previous section, the corresponding contribution
to the cross section is

σpA
D (WJJ)

��
2
= Kx1x2σS(W )σS(JJ)

�
fx1x2(β1 − β2)fx�

1
(b1)fx�

2
(b2)

× ρ(B1, z1; B2, z2) dz1dz2 δ(B1 −B2 + b1 − b2 + β1 − β2)

× db1 db2 d(β1 − β2) dB1 dB2 (14)

The expression in Eq.(14) has been obtained by disregarding the dependence of Γ(x�i/Zi; bi)

on Zi in Eq.(10). The lower limit of the integration on Zi in Eq.(10) is x�i and one has therefore
implicitly assumed that x�i � Zi, which limits the validity of Eq.(14) to the region of small x�i.
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on Zi in Eq.(10). The lower limit of the integration on Zi in Eq.(10) is x�i and one has therefore
implicitly assumed that x�i � Zi, which limits the validity of Eq.(14) to the region of small x�i.

14

CK = 0.99, in case b)

The cross section is given by

σpA
D (WJJ)

��
2
= K

�Z
A
σpp
S (W ) +

A− Z

A
σpn
S (W )

�
σpp
S (JJ) (21)

×
��

T (B)2d2B − 2

�
ρ(B, z)2d2Bdz × rc CK

�

where we made the approximation σpp
S (JJ) ≈ σpn

S (JJ). The ratio

R =
σpA
D (WJJ)

σpA
D (WJJ)

��
1

(22)

is thus independent on the final state phase space:

R = 1 +K
σeff
A

��
T (B)2d2B − 2

�
ρ(B, z)2d2Bdz × rc CK

�
(23)

For lead, using the Woods-Saxon nuclear density, in the two cases a) and b) one obtains

a) K2 = 2,πΛ2 = 31.36mb : R = 1 + 2.94 ≈ 4 (24)
b) K2 = 1,πΛ2 = 15 mb : R = 1 + 2.03 ≈ 3

and the correction induced by short range nuclear correlations to the term
�
T (B)2d2B is

about 8% in case a) and about 10% in case b). The ratio R therefore depends weakly on nuclear
correlations and is rather sensitive to the different options for the values of K and Λ. Notice
also the strong dependence of σpA

D (WJJ)
��
2

(Eq.21) on K and its weak dependence on Λ (only
through CK).

4. NUMERICAL ESTIMATES

To have a rough estimate of the different effects of the DPS in p -Pb and in p -p collisions, one
may compare the production rates in the same kinematical region where DPS has been measured
by ATLAS in p -p collisions. According with ATLAS, the fraction of events with DPS is about 7%
and one would not expect that, in interactions with a nucleus, the ratio σpA

D (WJJ)
��
1
/σpA

S (WJJ)

will be much different. Taking the ratio

σpA(WJJ)

σpA
S (WJJ)

= 1 +
σpA
D (WJJ)

��
1

σpA
S (WJJ)

×R (25)

one thus obtains that the fraction of events with DPI will grow to about 27.3%, if there are
no transverse correlations (case a), and to about 22.5%, if the distribution in multiplicity is
Poissonian (case b).

 
We have evaluated the cross section below with K, Λ and σeff independent on x	

 

WJJ production in pA collisions 

short range nuclear correlation	


nuclear density	

=> growth as A	


nuclear thickness function	

=> growth as A4/3	


anti-shadowing	

contribution	
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We have evaluated the cross sections assuming that K, Λ and σeff are independent 
on x   ( σeff = πΛ2/K2 ), in two extreme cases	

	

a)   K2 = 1 and  πΛ2 = σeff  : No correlation in multiplicity, σeff gives the typical value 

of the transverse area where the DPS takes place	


b)  K2 = 2 and πΛ2 = K2 σeff  : The observed value of σeff is completely due to the 
correlation in multiplicity	


 
In both cases we have evaluated the cross sections with two different values for σeff:	

 
σeff = 15 mb (ATLAS) and	

	

σeff = 20.7 mb (CMS) 	
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Expectations according with the simplest model 

a)   K2 = 1 and  πΛ2 = σeff  (No correlation in multiplicity)	


[200% anti-shadowing corrections]	


b)  K2 = 2 and πΛ2 = K2 σeff  (No correlations in the transverse coordinates)	


        [300% anti-shadowing corrections] 
	

	

	

while the amount of anti-shadowing changes only by about 6% when σeff  changes 
from 15 (ATLAS) to 20.7 mb (CMS) 

2

G(x) = �n�x, G(x1, x2) = �n(n− 1)�x1,x2 (6)

Kx1x2 = 1 (7)
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D |2

σpA
D |1

≈ 2 (8)
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�
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�
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1; 0) = G(x�1) (11)

σpD
1,1;I(x1, x2, x

�
1, x

�
1) � Kx1x2G(x1)G(x2) σ̂(x1x

�
1)σ̂(x2x

�
1)

×
�

fx1x2(b)Γ
2(x�1, b)db× |ΨD(1, 0)|

2

O(R2
/R

2
D) ≈ 7× 10−2 (12)
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A more detailed information from the transverse spectra: 
 
pt  spectrum of the leading jet in p-p and in p-Pb 

The shape in pt of the leading jet is very different in p-p and in p-Pb for 
pt < 40 GeV 	
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pt spectrum of the W decay-lepton in p-p and in p-Pb  

While the spectrum does not change much in p-p collisions, the effect in 	

p-Pb collisions is dramatic and one expects an increase of about 90% at 	

pt ~ 40GeV	
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pt spectrum of the W decay-lepton in p-Pb: dependence on K and on  
the measured value of σeff  in p-p collisions   

The spectra in p-Pb collisions do not change much, when σeff  increases 
from 15 to 20 mb in p-p collisions. The effect of increasing K2 from 1 to 2 
is on the contrary sizable and, in p-Pb collisions, one expects an increase 
from 60 to 90 % of the observed cross section at pt ~ 40 GeV	




In the simpest model for DPS, not inconsistent with present experimental 
evidence, one considers only disconnected hard interactions and σeff  does not 
dependent on fractional momenta.	

	

In the model σeff is given by the ratio of the typical transverse interaction area 
(πΛ2) and the multiplicity of parton pairs (K2). DPS in p-p collisions can thus 
provide information only on the ratio between Λ and K. 	

	

In p-A collisions the DPS interaction is simpler for processes which do not 
involve identical partons. We have thus studied in some detail the production of 
WJJ in p-Pb collisions. 	

	

In p-A collisions the DPS cross section is characterized by a very strong anti-
shadowing (~ 2-300% positive correction term). The anti-shadowing correction 
term is a) proportional to the factor K, which gives the multiplicity of parton 
pairs in the projectile proton and b) it depends weakly on the partonic 
correlations in the transverse coordinates. 	
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Concluding Summary 



Daniele	  Treleani,	  Univ.	  of	  Trieste	  and	  INFN	   21	  

In particular the pt spectra of the leading jet and of the large pt lepton are 
characterized by the following peculiar features:	

	

- the spectrum of the leading jet is expected to show an evident change of shape 
at pt < 40 GeV;	

- while the spectrum of the lepton should show a substantial increase at pt ~ 40 
GeV (namely at transverse momenta of about ½ the mass of the W boson).	

	

Once the expectations of the model were verified, both qualitatively and, at least 
to some extent, also quantitatively, one would have a reasonable argument to 
consider seriously the possibility of gaining reliable indications on the average 
number of pairs of partons in the proton, by measuring the amount of anti-
shadowing in DPS in p-Pb collisions.	

	

As soon as an estimate of K is available, one obtains Λ from the measured value 
of σeff , acquiring in this way non trivial information on the 3D structure of the 
proton.  	
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Thank you	
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The	  hard	  part	  of	  
the	  interacQon	  
is	  connected.	  
The	  whole	  hard	  
process	  takes	  
place	  in	  a	  single	  
point	  in	  
transverse	  space	  

The	  hard	  part	  of	  
the	  interacQon	  is	  
disconnected.	  
The	  hard	  process	  
takes	  place	  in	  
two	  different	  
points	  in	  
transverse	  space	  

The	  two	  processes	  have	  a	  Different	  
dependence	  on	  fracQonal	  momenta	  

Dominant	  at	  
small	  x	  

Dominant	  at	  
large	  x	  



Daniele	  Treleani,	  Univ.	  of	  Trieste	  and	  INFN	   24	  

F3!

Q1!

Q2!

F1!

F2!

PA-2!

P!F3!P!

A! A!

Q1!

Q2!

F1!

F2!

PA-2!

Q2!

Q1!

P!

A!

a)! b)!
In the case of two active target nucleons, when the two target partons are identical, 
in addition to the usually considered diagonal term one needs in fact to keep into 
account also the contribution of an interfrence term	


One has two different contributions to the forward scattering amplitude, in 
the case of two active target nucleons	




In the interference term the nucleon’s fractional momenta are different in the  right and in 
the left hand side of the cut: Z-Z’=x’1-x’2                   the interference term is proprotional to 
the nuclear form factor, as a function of Z-Z’	

	

x’1 and x’2 are measured in the final state. When x’1-x’2 is large, the contribution of the 
interference term therefore is small. In many cases of interest the contribution of the 
interference term is however sizable. 	

	

The two interactions are localized in two points in transverse space. Given two interaction 
points the parton with fractional momentum x’1 may be provided by nucleon-1 and the 
parton with fractional momentum x’2 by nucleon-2 (configuration in A) or vice-versa 
(configuration in A*)	
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