Averaging, passages through resonances, and captures into resonance in dynamics of charged particles

Anatoly Neishtadt,

Loughborough University, UK
Space Research Institute, Moscow,Russia

Based on joint works with:
A.Artemiev
A.Chernikov
A.ltin
B.Petrovichev
R.Sagdeev
D. Vainchtein
A.Vasiliev
G.Zaslavsky
L.Zelenyi

This is how a capture into resonance looks like:

We consider motion of a charged particle in a constant background magnetic field and a wave exited in a plasma

This is a natural problem for application of the averaging method:

- for strong magnetic field: averaging over Larmor rotation,
- for high frequency wave: averaging over the phase of the wave - this is the case which we consider.

Averaging over the phase of the wave washes out the effect of the wave. The averaged motion is just a Larmor motion.
projection of the particle's velocity onto direction of the wave propagation is equal to the phase velocity of the wave.

Averaging over the phase of the wave washes out the effect of the wave. The averaged motion is just a Larmor motion.

In the process of Larmor motion the particle may approach Cherenkov's resonance with the wave:
projection of the particle's velocity onto direction of the wave propagation is equal to the phase velocity of the wave.
This is a particular case of a general problem of passage through resonances in slow-fast Hamiltonian systems.

Equation of motion

$\frac{d}{d t}(m \vec{V})=\frac{e}{c} \vec{V} \times\left(\vec{B}_{0}+\vec{B}\right)+e \vec{E}$
\vec{B}_{0} - constant background magnetic field
\vec{E} - electric field of the wave
$\vec{B} \quad$ - magnetic field of the wave

1. Electrostatic wave perpendicular to constant magnetic field, non-relativistic particle

The wave propagates along y-axis
B_{0} - the uniform magnetic field E_{y} - the electric field of the wave

$$
E_{y}=E_{0} \sin (k y-\omega t) .
$$

$$
\begin{aligned}
& \dot{v}_{x}=\frac{e B_{0}}{m c} v_{y}, \\
& \dot{v}_{y}=-\frac{e B_{0}}{m c} v_{x}+\frac{e}{m} E_{y}
\end{aligned}
$$

$$
\ddot{y}=-\left(\frac{e B_{0}}{m c}\right)^{2} y+\frac{e E_{0}}{m} \sin (k y-\omega t)
$$

Slow-fast form of equations

$$
\phi=k y-\omega t-\text { the phase of the wave, }
$$

$v_{\phi}=\omega / k$-the phase velocity of the wave,

$$
v_{x}=\dot{x}, v_{y}=\dot{y}, b_{n}=e B_{0} /(m c), \delta=e E_{0} / m
$$

Assume that

$$
\begin{aligned}
& v_{\phi}, v_{x}, v_{y}, b_{n}, \delta \propto 1 \\
& \omega \gg 1, k \gg 1
\end{aligned}
$$

v_{x}, v_{y} - slow variables,
ϕ - a fast variable.

Near the resonance in the principal approximation

$$
\ddot{\phi}=k \delta \sin (\phi)-k b_{n} v_{x}, \quad \dot{v}_{x}=b_{n} v_{\phi} \quad k \gg 1
$$

In this system v_{x} is a slow variable, and $\phi, \dot{\phi}$ are fast variables. This is the equation of a pendulum with an external torque and slowly varying parameter.
Two types of phase portraits for frozen v_{x} :

Capture into resonance

The area A surrounded by the trajectory is an adiabatic invariant: its value is approximately conserved in the evolution.

The graph of the area of the oscillatory domain:

Capture into resonance is possible at $v_{x}<0$

Capture into resonance and escape from the resonance

2. Electromagnetic wave perpendicular to constant magnetic field, non-relativistic particle
(N., Artemyev, Zelenyi, Vainchtein, 2009)

The wave propagates along y-axis
B_{0} - the uniform magnetic field
B_{z} - the magnetic field of the wave E_{x} - the electric field of the wave

$$
\begin{aligned}
& \dot{v}_{x}=\frac{e}{m c}\left(B_{0}+B_{z}\right) v_{y}+\frac{e}{m} E_{x} \\
& \dot{v}_{y}=-\frac{e}{m c}\left(B_{0}+B_{z}\right) v_{x}
\end{aligned}
$$

$$
\begin{aligned}
& B_{z}=-\tilde{B} \sin (k y-\omega t), \\
& E_{x}=\frac{\tilde{B} \omega}{k c} \sin (k y-\omega t) .
\end{aligned}
$$

Slow-fast form of equations

$\phi=k y-\omega t$ - the phase of the wave,
$v_{\phi}=\omega / k$ - the phase velocity of the wave,
$v_{x}=\dot{x}, v_{y}=\dot{y}, b_{n}=e B_{0} /(m c), \delta=e \tilde{B} /(m c)$

Assume that

$$
\begin{aligned}
& v_{\phi}, v_{x}, v_{y}, b_{n}, \delta \propto 1, \\
& k \gg 1, \omega \gg 1
\end{aligned}
$$

$\int \dot{v}_{x}=\left(b_{n}-\delta \sin (\phi)\right) v_{y}+\delta v_{\phi} \sin (\phi), \quad v_{x}, v_{y}-$ slow variables, ϕ - a fast variable.
$\left\{\dot{v}_{y}=-\left(b_{n}-\delta \sin (\phi)\right) v_{x}\right.$,
$\dot{\phi}=k v_{y}-\omega$
The averaged over ϕ system

$$
\dot{v}_{x}=b_{n} v_{y}, \dot{v}_{y}=-b_{n} v_{x}
$$

describes Larmor rotation.

Reduction near the resonance

$$
\left\{\begin{array}{l}
\dot{v}_{x}=\left(b_{n}-\delta \sin (\phi)\right)\left(\dot{\phi} / k+v_{\phi}\right)+\delta v_{\phi} \sin (\phi), \\
\ddot{\phi}=-k\left(b_{n}-\delta \sin (\phi)\right) v_{x}
\end{array}\right.
$$

Near the resonance $\dot{\phi} \approx 0$. Thus in the principal approximation

$$
\left\{\begin{array}{l}
\dot{v}_{x}=b_{n} v_{\phi}, \\
\ddot{\phi}=-k\left(b_{n}-\delta \sin (\phi)\right) v_{x}
\end{array}\right.
$$

$$
k \gg 1
$$

In this system v_{x} is a slow variable, and $\phi, \dot{\phi}$ are fast variables. This is the equation of a pendulum with an external torque and slowly varying parameter.

Capture into resonance

$$
\begin{aligned}
& \text { Let } \delta>b_{n} . \\
& \left\{\begin{array}{l}
\dot{v}_{x}=b_{n} v_{\phi}, \\
\ddot{\phi}=-k v_{x}\left(b_{n}-\delta \sin (\phi)\right)
\end{array}\right.
\end{aligned}
$$

The area A surrounded by the trajectory is an adiabatic invariant: its -2
 value is approximately conserved in the evolution.

The area of the oscillatory domain

$$
S \propto \sqrt{k\left|v_{x}\right|}
$$

Capture into resonance is possible at $v_{x}>0$

Capture into resonance (velocity plane)

Capture into resonance (coordinate plane)

Capture into resonance (pendulum phase plane)

Capture into resonance (velocity vs. time)

Capture into resonance is a quasi-random phenomenon.

The probability of capture for one passage through the resonance (on one Larmor round) is

$$
P=S v_{\phi} /\left(4 \pi k v_{x}^{2}\right) \propto 1 / \sqrt{k} .
$$

The probability of capture for $\propto \sqrt{k}$ passages through the resonance (on $\propto \sqrt{k}$ Larmor rounds) is of order 1 (cf. D.Dolgopyat, 2005).

Remarks.

The particle moves with the wave and accelerates in the direction along the wave front. Such acceleration is called a surfatron acceleration.

The surfatron acceleration was first discussed by R.Z.Sagdeev (1964) for non-relativistic particles and electrostatic waves. In this case a unlimited acceleration does not exist.

The possibility of a unlimited surfatron acceleration of ultra-relativistic particles by electrostatic waves was discovered by T.Katsouleas and J.Dawson (1983).

Scattering on resonance

Let $\delta<b_{n}$.

$$
\left\{\begin{array}{l}
\dot{v}_{x}=b_{n} v_{\phi}, \\
\ddot{\phi}=-k v_{x}\left(b_{n}-\delta \sin (\phi)\right)
\end{array}\right.
$$

There are no captures into the resonance. Each passage through resonance leads to a scattering: a small change of the energy of the particle occurs.

Scatterings on resonance

The diffusion due to scattering does not lead to a

 unlimited grow of the energy (this follows from KAMtheory)Poincaré sections for the period $2 \pi / \omega$:

3. Electrostatic wave perpendicular to constant magnetic field, relativistic particle

$$
p_{x}=m_{0} \gamma v_{x}, \quad p_{y}=m_{0} \gamma v_{y}, \quad \gamma=1 / \sqrt{1-\left(v_{x}^{2}+v_{y}^{2}\right) / c^{2}}
$$

Resonant flow: $\dot{p}_{x}=\left(e B_{0} / c\right) v_{\phi}$.

Reduction near the resonance:

- the motion is described by pendulum-like system depending on slowly varying parameter p_{x} :

$$
\dot{p}_{x}=\left(e B_{0} / c\right) v_{\phi} .
$$

- the graph of the area S of oscillatory domain has one of the following forms (here $\gamma_{\phi}=1 / \sqrt{1-\left(v_{\phi} / c\right)^{2}}$) :

Condition of surfatron acceleration $E_{1}>\gamma_{\phi} B_{0}$ was introduced by T.Katsouleas and J.Dawson (1983).

Capture into resonance, electrostatic wave, relativistic particle

Capture into resonance, electrostatic wave, relativistic particle, continued

4. Electromagnetic wave inclined to constant magnetic field, non-relativistic particle

The wave propagates along k-direction
B_{0} - the uniform magnetic field E_{x} - the electric field of the wave $B_{z}, B_{y}-$ magnetic field of the wave

$$
\begin{aligned}
& B_{y}=\frac{B k_{3}}{k} \sin (\varphi), B_{z}=-\frac{B k_{2}}{k} \sin (\varphi), E_{x}=\frac{B \omega}{k c} \sin (\varphi), \\
& \varphi=k_{2} y+k_{3} z-\omega t, k=\sqrt{k_{2}^{2}+k_{3}^{2}}, k \gg 1, \omega \gg 1
\end{aligned}
$$

Schematic description of capture into resonance and escape from resonance in $\left(y, p_{y}, p_{z}\right)$-space

- isoenergetic surface
- Larmor trajectory
- resonant trajectory
- point of capture
- point of escape

Capture into resonance and escape from the resonance

Evolution of an ensemble of particles

Scattering on resonance

Other examples:

- electrostatic wave inclined to constant magnetic field, relativistic particle (Itin, N., Vasiliev, 2000)
- electromagnetic wave perpendicular to constant magnetic field, relativistic particle (Itin, 2002, N., Artemyev, Vailiev, 2011)

References

G.M. Zaslavsky, A.I. Neishtadt, B.A. Pertovichev, R.Z.Sagdeev, Sov.J. Plasma Physics, 15 (1989), 368
A.I.Neishtadt, B.A. Petrovichev, A.A. Chernikov, Sov. J. Plasma Physics, 15 (1989), 1021.
A.I. Neishtadt, A. V. Artemyev, L. M. Zelenyi, and D. L. Vainchtein, JETP Letters, 89 (2009), 528.
A.V. Artemyev, A.I. Neishtadt, L M. Zelenyi, and D.L. Vainchtein, Chaos, 20 (2010), 043128.
A.A. Vasiliev, A. V. Artemyev, A.I. Neishtadt, Physics Letters A, 375 (2011), 3075.

Non-relativistic particle, electromagnetic wave, capture

$$
b_{n}=\pi / 4, \delta=\pi, v_{\phi}=1, k=100
$$

Non-relativistic particle, electromagnetic wave, scattering

$$
b_{n}=2 \pi, \delta=\pi / 2, v_{\phi}=1, k=100
$$

Relativistic particle, electromagnetic wave, capture

$$
\delta / b_{n}=4,\left(0 / b_{n}=100, v_{\phi}=1 /(52000) c\right.
$$

Relativistic particle, electromagnetic wave, scattering

$$
\delta / b_{n}=0.5,0 / b_{n}=100, v_{\phi}=1 /(52000) c
$$

Non-relativistic particle, electrostatic wave, capture

$$
E / B_{0}=10,0_{\text {wave }} / \omega_{c}=100, v_{\phi}=1
$$

Relativistic particle, electrostatic wave, capture

$$
E / B_{0}=13, \omega_{\text {wave }} / \omega_{c}=1, v_{\phi} / c=0.3
$$

