Struttura a bassa emittanza per DAΦNE Gamma Factory S. Guiducci

- Per la proposta di convertire DAΦNE in una "gamma factory" occorre valutare la possibilita' di diminuire notevolmente l'emittanza ed ottenere le dimensioni dei fasci necessarie all'esperimento
- Per stimare quale emittanza si puo' ottenere senza modifiche di hardware e per studiare gli effetti di IBS e allungamento anomalo sulle dimensioni dei fasci, si presenta qui una versione preliminare di una possibile ottica
- Una forte riduzione dell'emittanza in DA ΦNE si puo' ottenere:
 - Abbassando il campo del wiggler
 - Abbassando la dispersione nel wiggler

3/25/14

Parametri per DA Φ NE Gamma Factory

Beam Parameters		
e ⁻ stored current [A]	1.5	
# of bunches	60	
bunch charge [pC]	8152	
e ⁻ beam energy [MeV]	510	
e beam energy spread [%]	0.050	
e ⁻ emittance [mm*mrad]	0.100	
coupling @ IP [%]	2.5	
e ⁻ bunch length [ps]	50	
e^{-} vertical beam dimension @ IP [μ m]	40.0	
e ⁻ horizontal beam dimension @ IP $[\mu m]$	1600.0	
e vertical beta function @ IP [m]	0.6	
e ⁻ horizontal beta function @ IP [m]	25.6	

Laser and Gamma beam Parameters	
laser circulating power [kW]	36.8
Laser energy per pulse [µJ]	200.0
laser wavelength [μm]	1.0
Fabri-Perrot resonator length [m]	1.63
Laser pulse length [ps]	20
laser beam dimension @ IP [µm]	40
maximum photon energy [MeV]	4.94
Collision angle ϕ [deg]	8
Luminosity [cm ⁻² s ⁻¹]	1.4·10 ³⁶
total gamma flux [photons/s]	0.96·10 ¹²
gamma beam energy spread [%]	0.57
total gamma flux in the bandwidth [ph/s]	5.8·10 ⁹
spectral density SPD [ph/s/eV]	81533
maximum collecting angle [µrad]	63

D. Alesiniet al. DA Φ NE GAMMA-RAYS FACTORY to be published

Parametri dell'ottica modificata

Beam Energy (GeV)	0.51
Circumference (m)	97.53
alfac	0.0077
Qx	4.870
Qy	4.075
Chromaticity x	-6.84
Chromaticity y	-10.69
Emittance x (m rad)	4.48E-08
E loss/turn (MeV)	0.0089
Transverse damping time (ms)	37.1
Relative energy spread rms	4.00E-04
RF Voltage (KV)	180
Energy RF acceptance (%)	1.5
Bunch length (mm)	6.65

Modello di DA Φ NE usato: P. Piminov, MAD8 14/2/2012 Confronto tra modello e misure betax del 19 dicembre 2014

Riduzione di emittanza abbassando il campo del wiggler senza modificare la struttura ottica

Nominal	values						•						
E (MeV)	510						ϵ_0						
B wig ref (T)	1.81	3.50E-07											
B wig/B wig ref	0.9	3.00E-07											
ro arc (m)	1.406	2.50E-07	-										
ϵ_0 (m rad)	2.87E-07	2.00E-07	-										
		1.50E-07	-		•								
		1.00E-07											
Bwig/Bwig ref	6 <mark>0</mark> 3	5 00F-08											
0.9	2.87E-07	0.00E+00											
0.8	2.55E-07	0.002.00	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	-
0.6	2.04E-07						wig /n	wig					
0.4	1.77E-07					D	···•/ D	re	f				
0.2	1.73E-07			Per	Β.	/Bre	•f = ().5 il	tem	po d	i		
0	1.76E-07		da	amp	ing s	i din	nezza	a e l'	emit	tanz	a si		

riduce di un fattore 1.5

 $\epsilon_0 = 1.9 \ 10^{-7} \text{ m rad}$

Effetto dell' IBS sulle dimensioni del fascio

	Only IBS				
E (GeV)	0.51	0.51	0.51		
N part/bunch	5.10E+10	5.10E+10	5.10E+10		
transverse damping time (ms)	37.1	37.1	37.1		
coupling k	0.025	0.025	0.050		
ε _{x0} (m) no IBS	4.48E-08	4.48E-08	4.48E-08		
ε _{γ0} (m) no IBS	1.12E-09	1.12E-09	2.24E-09		
σ _{p0} no IBS	4.00E-04	4.00E-04	4.00E-04		
RF Voltage (KV)	180.00	73.00	180.00		
σ _{ι0} (mm) no IBS	6.65	10.50	6.65		
IBS emittance growth	1.92	1.70	1.71		
IBS energy spread growth	1.18	1.14	1.14		
ϵ_x (m) with IBS	8.60E-08	7.63E-08	7.65E-08		
ε _y (m) with IBS	2.15E-09	1.91E-09	3.83E-09		
σ_p with IBS	4.72E-04	4.57E-04	4.57E-04		
σ_{I} (mm) (with IBS)	7.90	12.00	7.60		

I 3 differenti set di parametri differiscono per la lunghezza del bunch e per il valore dell'accoppiamento

Parametri tenendo conto dell' IBS

	No IBS With IB			
Beam Energy (GeV)	0.51			
Circumference (m)	97	.53		
alfac	0.0	077		
Qx	4.8	370		
Qy	4.0)75		
Chromaticity x	-6.	.84		
Chromaticity y	-10.69			
Emittance x (m rad)	4.48E-08	8.60E-08		
Emittance y (m rad)	1.12E-09	2.15E-09		
E loss/turn (MeV)	0.0089 0.0089			
Transverse damping time (ms)	37.1			
Relative energy spread rms	4.00E-04 4.72E-0			
RF Voltage (KV)	180 180			
Energy RF acceptance (%)	1.5 1.5			
Bunch length (mm)	6.65 7.9			
Touscheck beam lifetime (s)	533	1381		
Horizontal beta function @ IP (m)	18	18		
Horizontal dispersion @ IP (m)	2.8	2.8		
Vertical beta function @ IP (m)	0.6	0.6		
Horizontal beam size @ IP (µm)	1436	1815		
Horizontal beam angle @ IP (µrad)	50	69		
Vertical beam size @ IP (µm)	26	36		
Vertical beam angle @ IP (µm)	43	60		

Dimensioni fascio tenendo conto dell' IBS

			CAIN
	No IBS	With IBS	simulation
Horizontal beam size @ IP (µm)	1436	1815	1600
Horizontal beam angle @ IP (µrad)	50	69	63
Vertical beam size @ IP (µm)	26	36	40
Vertical beam angle @ IP (µm)	43	60	65

Con l'IBS le dimensioni del fascio all'IP sono, entro il 10%, uguali a quelle usate per calcolare I parametri del fascio gamma beam con il codice di simulazione CAIN

Effetto dell' allungamento anomalo (1)

Una possibile sorgente di aumento delle dimensioni del fascio all'IP e' l'allungamento anomalo.

La lunghezza del bunch misurata in DA Φ NE e' ben rappresentata da:

$$\left(\frac{\sigma_z}{R}\right) \approx \left(\frac{2}{\pi}\right)^{1/6} \xi^{1/3} \left(\frac{Z}{n}\right)^{1/3} \text{ with } \xi = \frac{2\pi I}{heV_{RF}\cos\varphi_s}$$

$$con Z/n = 0.3 Ohm$$

RF Voltage (KV)	180
Bunch length (mm)	6.65
Bunch current (mA)	25
Bunch length (mm) @25 mA	18.8
Bunch lengthening factor	2.8

L'aumento della lunghezza del bunch ne riduce la densita' e di conseguenza riduce la crescita di emittanza dovuta all'IBS

Effetto dell'allungamento anomalo (2)

- L'aumento della lunghezza del bunch ne riduce la densita' e di conseguenza riduce la crescita di emittanza dovuta all'IBS
- Il problema e' l'aumento di spread di energia associato, che in presenza di una dispersione alta all'IP da' un'aumento delle dimensioni trasverse del fascio
- E' molto importante ottenere una stima precisa dello spread di energia
- Simulazioni di allungamento del bunch eseguite per la camera da vuoto originale indicavano un'aumento di spread di energia minore dell'allungamento del bunch
- Queste simulazioni si dovrebbero ripetere per l'attuale camera da vuoto
- Il passo successivo sara' il calcolo di una struttura ottica che dia le dimensioni del fascio ottimali anche tenendo conto di IBS e allungamento anomalo

3/25/14

Possibile configurazione IR per Gamma Factory

Prossimo passo: realizzare una struttura ottica con una configurazione della zona d'interazione ottimizzata per l'installazione della cavita' laser e la realizzazione di una sala 3/25/14 sperimentale

Conclusioni

- E' stata calcolata un'ottica preliminare a bassa emittanza per la gamma factory e sono stati stimati gli effetti di IBS ed allungamento anomalo
- Il passo successivo sara' il calcolo di una struttura ottica che abbia dimensioni del fascio ottimali anche tenendo conto di questi effetti
- In particolare l'emittanza si puo' aumentare fino a ~ 0.08x10⁻⁶ mxrad aumentando la dispersione nei wigglers e di conseguenza riducendola all'IP
- In questo modo l'effetto dello spread in energia sulle dimensioni del fascio si riduce
- La nuova ottica avra' anche una sezione d'interazione ottimizzata per l'esperimento