Dark Matter 1-ton Era

Cristiano Galbiati **Princeton University**

> Rome La Sapienza May 26, 2014

WIMP Mass [GeV/ c^2]

What Techniques

- Si/Ge Bolometers \bullet
- Nal Scintillating Crystals \bullet
- **Bubble Chambers**
- Noble (Xe/Ar) Scintillators
- Noble (Xe/Ar) Scintillating TPC
-
-
-
-
-
-
-
-
- -
- -
	-
	-
- -
-
-
-
-
- -
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- - -
- - -
		-
	- -
		-
		-
		-
		-
		- -
			-
			-
			- -
			-
			-
			-
		-
-
-
-
- -
-
-
-
- -
	-
- -
-
-
-
-
-
-
- -
-
- -
	-
-
-
-

Remember!

• It only makes sense if you can guarantee background-free condition

PICO Bubble Chambers and Update on COUPP60

Hugh Lippincott, Fermilab for the PICO Collaboration UCLA DM 2014

(temperature and pressure), bubble chambers are blind

Why bubble chambers?

- By choosing superheat parameters appropriately to electronic recoils (10-10 or better)
- To form a bubble requires two things
	- Enough energy
	- Enough energy density length scale must be comparable to the critical bubble size

• Electronic recoils never cross the second threshold!

• Collected >3000 kg-days of dark matter search data between 9 and 25 keV threshold

-
- No darkening 22

• Good live fraction > 80% (including >95% over the last month)

COUPP60 - the data

- Analysis still under development
- Good news: Zero multiple bubbles, no neutrons. Limit on neutron rate is factor 7 below observed rate in COUPP4
- Bad news: Population of events that sound like nuclear recoils but are clearly not WIMPs
	- Silver lining: statistics we can actually study them in detail

XMASS, present and future development

S. Moriyama Kamioka Observatory, The University of Tokyo

Institute for Cosmic Ray Research, 28th Feb. 2014, Dark Matter 2014, UCLA

XMASS: LXe single phase@detector

- Many interesting physics targets, including EM interactions
	- Dark matter: elastic, inelastic ¹²⁹Xe, super-WIMPs, ALP, HP, ...
	- Solar axions, 2vDEC, SN, and other unexpected signal
- Intrinsic BG of XMASS I: O(10⁻⁴)/kg/keV_{ee}/d @40keV dominated by ²¹⁴Pb, w/o part. ID (arXiv: 1401.4737)

R10789

 $(2$ inch)

Key component. to see the surface

- One of the most simple and straightforward way to see the surface events is the use of PMTs with a convex, dome shape photocathode.
- Similar shape can be seen in many examples.

From PMT handbook (HPK)

Identification performance

- 3 PMTs accept 40-50% of total
- One example of surface ID: 3 PMTs > 10% of total PE
- Assume surface RI 8mBq 210Pb, 10⁷ events ~42y. In 2-2.5keV_{ee} 0.1 events/y w/o dead tube 0.3 events/y w/ 15 dead tubes
- DM signal efficiency \sim 20% of all volume.

Surface events can be identified and rejected effectively.

Beyond the surface: solar ppv, Kr and Rn

- Internal background, future goal < $10^{-5}/kg/keV_{\text{eq}}/d$ – e scat. by solar pp $v \sim 10^{-5}/kg/keV_{\text{eq}}/d$ \rightarrow irreducible $-$ 212Pb, <0.3µBq/kg \sim 10⁻⁵/kg/keV_{ee}/d=dru \rightarrow 1/10 $-$ ⁸⁵Kr (Q_β=687keV, τ_{1/2}=11yr), 1ppt ~10⁻⁵dru → 1/10 $-$ ²¹⁴Pb, 10mBq/kg \sim 10⁻⁴dru \rightarrow <1/10
-
-
-
-
- γ ray and neutron contribution will be evaluated.
- Prediction of these background are accurate and will be taken into account in analyses to search for DM signal. $<$ \sim 10⁻⁴⁶cm² would be searched for.

DM 100kg FV (800kg) 0.8mφ, 642 PMTs 2007- To discover DM

DM 1ton FV (5ton) 1.5mφ, ~1000 PMTs Requesting budget DM, pp solar ν \sim 10⁻⁴⁶cm² Annual/spectral info.

XMASS-II

DM, solar, ββ 10ton FV Detailed study of DM pp solar ν $ββ$ ~30meV(IH)

XMASS in future

XMASS-1.5

Dark-matter Experiment using Argon Pulse Shape Discrimination Fabrice Retière on behalf of the DEAP collaboration

DEAP-3600 concept

Feb 28th, 2014 2

3.6 tonnes of liquid Argon

o Enclosed in 85 cm radius acrylic ball

- o 1 tonne fiducial
	- ¾Excluding surface events

Scintillation only

- o Aka single phase
- o Light viewed by 255 photo-multiplier tubes

Neutron background mitigation

Pulse shape discrimination concept

Projected backgrounds

Mitigation

- Shielding: 6000 mwe (SNOLAB), Active water shield, light guides and filler blocks Material selection
- Pulse shape discrimination Material selection (for γ)
- Material selection, SAES getter,
- cold charcoal radon trap
- ** High energy events, not in ROI*
- Material selection (acrylic), sanding of AV (1mm removal), fiducialization.

WIMP-nucleon cross section sensitivity of 10⁻⁴⁶ cm² at 100GeV.

Feb 28th, 2014 11

Total of <0.6 events in ROI in 3 years for a spin-independent

Assuming 8PE per keV

Challenge for Scintillating Detectors

Nuclear Instruments and Methods in Physics Research A 568 (2006) 700–709

Time and space reconstruction in optical, non-imaging, scintillator-based particle detectors

C. Galbiati, K. McCarty*

^a Physics Department, Princeton University, Princeton, NJ 08544, USA

Received 22 April 2005; received in revised form 25 July 2006; accepted 29 July 2006 Available online 24 August 2006

ScienceDirect

www.elsevier.com/locate/nima

Challenge for Noble Scintillators

t.o.f.:

∂*x* =

c^σ *n* 3 *N*

diffusive propagation: ∂*x* = *R* 3 2 *N*

Scintillating Noble TPCs

∂*z* ≈ 1 mm ∂(*x*, *y*) ≈ 1− 3 cm

T. Shutt - NygrenFest, May 3, 2014

How a two-phase Xe TPC is a perfect way to look for WIMPs

T. Shutt

Case Western Reserve University

- Liquid Xe large signal, strong shielding of external backgrounds
- 3D event position

• Charge (S2) / light (S1) distinguishes electron recoil backgrounds

• Single electrons and photons

Self-shielding in liquid xenon

17

• MeV gammas and neutrons: λ ~10 cm

$$
P(L) \cong \frac{L}{\lambda} e^{-\frac{L}{\lambda}}
$$

PMT

Single, low-energy Compton scatter

300 kg LUX

Future directions

• LZ is not quite at neutrino limit

• Background rejection might or might not be sufficient to

defeat pp solar neutrino background

• Get rid of PMT radioactivity — Would enable simultaneous ßß-decay and DM search

• Please buy LED light bulbs

Future Directions of Xe Scintillating TPC

- XENON-1t at LNGS (2016?)
- LZ at Sanford Lab (?)
- XENON-nt at LNGS (?)
-
-
-
-
-
-
-
-

DarkSide A scalable, zero-background technology

• Pulse shape of scintillation provides powerful discrimination for NR vs. EM events:

Rejection factor ≥108 for >60 photoelectrons: proposed by Boulay & Hime, AstropartPhys 25, 176 (2006) demonstrated by WARP AstropartPhys 28, 495 (2008)

- Ionization:scintillation ratio a semi-independent discrimination mechanism:
- Great spatial resolution from ionization drift localizes events, allowing rejection of multiple interactions, "wall events", etc.
- Underground argon 39Ar abatement factor ≥150

Argon Scintillating TPC

Beta/Gamma Nuclear Recoil

Underground Argon Measurements

-
-
-
-

Mr **[GeV]**

Underground Argon Measurements

-
-
-
-

Liquid Argon TPC & Cryostat

4-m Diameter Liquid Scintillator Neutron Veto

Mile .

10-m high Water Tank

Class 100 Clean Room Radon < 5mBq/m³

 $\overline{\Xi}$

- 100

À

The End

Like the jelly beans in this jar, the Universe is mostly dark: 96 percent consists of dark energy (about 70%) and dark matter (about 26%). Only about four percent (the same proportion as the lightly colored jelly beans) of the Universe - including the stars, planets and us - is made of familiar atomic matter.