Interaction with the Geant4

!'_ kernel)

Luciano Pandola ’NFlé
INEN-LNGS and Lng | L~ Geants

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part V: Write information

!'_ on output files

Introduction: data analysis
i with Geant4

= For a long time, Geant4 did not attempt to
provide/support any data analysis tools

= The focus was given (and is given) to the central mission
as a Monte Carlo simulation toolkit

= As a general rule, the user is expected to provide her/his
own code to output results to an appropriate analysis
format

= Basic classes for data analysis have recently been
Implemented in Geant4 (g4analysis)

= Support for histograms and ntuples
= Output in ROOT, XML, HBOOK and CSV (ASCII)

= Appropriate only for easy/quick analysis: for advanced
tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
i simulation results

= Formatted (= human-readable) ASCI1 files

= Simplest possible approach is comma-separated values
(.csv) files

= The resulting files can be opened and analyzed by tools
such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, ...

= Binary files with complex analysis objects (Ntuples)

= Allows to control what plot you want with modular choice
of conditions and variables

« EX: energy of electrons knowing that (= cuts): (1)
position/location, (2) angular window, (3) primary/secondary ...

= Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

i Output stream (G4cout)

= G4cout is a 1ostream object defined by Geant4.

= The usage of this objects is exactly the same as the
ordinary std: -cout except that the output
streams will be handled by G4UlImanager

= G4endl is the equivalent of std::endl toend a
line
= Output strings may be displayed on another
window or stored In a file

= One can also use the file streams o
(std: :ofstream) provided by the C++ libraries

Output on screen — an

$ example

vold SteppingAction::UserSteppinghction(const G4Step* aStep)

{

evthb = eventAction -> Trasporto();

G4String particleNane = aStep -> GetTrack() -> GetDynamicParticle() -> GetDefinition() -> GetParticleName();
G4String voluneNane = aStep ->GetPreStepPoint() -> GetPhysicalVolume() -> GetName();

G4double particleCharge = aStep -> GetTrack() -> GetDefinition() -> GetAtomicNumber () ;

Gddouble POG=aStep->GetTrack()->GetDefinition()->GetAtomicMass();

G4Track* theTrack = aStep->GetTrack();

Gddouhle kineticEnergy = theTrack -> GetKineticEnerqy();
Gdint trackID = aStep -> GetTrack() -> GetTrackID();
G4double edep = aStep->GetTotalEnerqyDeposit();

64String materiallane = theTrack->GetMaterial()->GetName();

<< "Energy deposited--->" << " " << edep << " "
<< ”Charge--->"" << " " << particleCharge << " "

<< ”Kinetic Energy --->" << " " << kineticEnergy << " "
<< G4endl;

Output on screen — an

;| example

!'_ G4analysis tools

i Native Geant4 analysis classes

= A basic analysis interface iIs available in Geant4 for
histograms (1D and 2D) and ntuples

= Make life easier because they are MT-compliant (no need
to worry about the interference of threads)

= Unique interface to support different output formats
= ROOT, AIDA XML, CSV and HBOOK

= Code is the same, just change one line to switch from
one to an other

= Everything done via the public analysis interface
G4AnalysisManager

= Singleton class: Instance()

= Ul commands available for creating histograms at run-
time and setting their properties

i g4analysis

= Selection of output format is hidden in a
user-defined .hh file

= All the rest of the code unchanged
= Unique Interface

#1fndef MyAnalysis h
#define MyAnalysis h 1

#include '"g4root.hh"

//#include ""g4xml._hh"
//#1nclude '‘g4csv.hh™ // can be used only with ntuples

#endir T

i Open file and book histograms

#include ""MyAnalysis.hh"

void MyRunAction: :BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboselLevel (1);
man->SetFirstHistold (1)) Start numbering of
)) histograms from 1D=1
// Creating histograms
man->CreateH1('h","Title", 100, 0., 800*MeV); ID=1
man->CreateH1("'hh" ,"Title",100,0.,10*MeV) ; ID=2

// Open an output file

man_>openFiIe("myoutput");:}_ Open output file
}

i Fill histograms and close

#include "MyAnalysis.hh"
void MyEventAction: :EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs); ID=1
man->FilIH1(2, TEnergyGap); ID=2
+
void MyRunAction: :EndOfRunAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Write();
man->CloseFile();

by
MyRunAction: :~MyRunAction()

{
}

delete G4AnalysisManager: :Instance();

i Histograms - 1

= Support linear and log scales and un-even
bins
= CreateH2() for 2D histograms

G4int CreateHl(const G4String& name, const G4String& title,
G4int nbins, G4double xmin, G4double xmax,

const G4String& unitName = '"‘none",
const G4String& fcnName = "‘none',
const G4String& binSchemeName = "linear');

G4int CreateHl(const G4String& name, const G4String& title,
const std::vector<G4double>& edges,
const GA4String& unitName = '‘none",
const G4String& fcnName = '‘none');

i Histograms - 2

= Can change parameters of an existing histogram
= Can fill with a weight
= Methods to scale, retrieve, get rms and mean

G4bool SetH1Title(G4int 1d, const G4String& title);
G4bool SetH1XAxisTitle(G4int 1d, const G4String& title);
G4bool SetH1lYAxisTitle(G4int 1d, const G4String& title);

G4bool FiIllIH1(G4int 1d, G4double value, G4double weight =
1.0);

G4bool ScaleH1(G4int i1d, G4double factor);

G4int GetHlld(const G4String& name, G4bool warn = true) const;

i Histograms - 3

= Ul support available, to change parameters
(e.g. file name) at run-time

/analysis/setFileName name
histograms and ntuple file
/analysis/setHistoDirName name
histograms directory
/analysis/setNtupleDirName name
histograms directory
/analysis/setActivation true]false
/analysis/verbose level

/analysis/hl/create

Set

Set

Set

Set
Set

name for the
name Ffor the
name Ffor the

activation option
verbose level

name title [nbin min max] [unit] [fcn] [binScheme] #

Create 1D histogram

i Ntuples

= g4tool supports ntuples

= Any number of ntuples, each with any number
of columns

= The content can be Iint/float/double

= For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

= Similar strategy as for histograms. Access

happens through the common interface
G4AnalysisManager

= Saved on the same output file with histograms

i Book ntuples

#include ""MyAnalysis.hh"
void MyRunAction: :BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man-> SetFirstNtupleld(l); Start numbering of
ntuples from ID=1
// Creating ntuple
man->CreateNtuple(''name', "Title"); :F-IDzl
man->CreateNtupleDColumn('Eabs™) ;
man->CreateNtupleDColumn("'Egap™) ;
man->FinishNtuple();

man->CreateNtuple("name2","title2"); :F-IDZZ
man->CreateNtuplelColumn("ID");
man->FinishNtuple();

i Fill ntuples

= File handling and general clean-up as
shown for histograms

#include ""MyAnalysis.hh"

void MyEventAction::EndOfEventAction(const G4Run* aRun)

{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Fi1 I INtupleDColumn(l1, O, fEnergyAbs);
man->F1 1 INtupleDColumn(1, 1, fEnergyGap); ID=1,
man->AddNtupleRow(1); columns 0, 1

man->Fi l INtuplelColumn(2, 0, fID); :}_ D=2

man->AddNtupleRow(2); column 0

Part VI: User-defined sensitive
detectors: Hits and Hits

!'_ Collection

‘L The ingredients of user SD

= A powerful and flexible way of extracting information
from the physics simulation is to define your own SD

= Derive your own concrete classes from the base
classes and customize them according to your needs

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Hits collection GA4THitsCollection<MyHit*>

i Hit class - 1

s Hit Is a user-defined class which derives from the
base class G4VHi1t. Two virtual methods

= Draw()
= Print()

= You can store various types of information by
Implementing your own concrete Hit class

= Typically, one may want to record information like
= Position, time and AE of a step

= Momentum, energy, position, volume, particle type of
a given track

= EtC.

i Hit class - 2

A “Hit” is like a “container”, a empty box which
will store the information retrieved step by step

\ = The Hit concrete class (derived by

™ GAVHIt) must be written by the user: the
Y= ‘\> user must decide which variables and/or
T= "; information the hit should store and when
AE = store them

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors

defined as sensitive). Stored in the “HitCollection”, attached
to the G4Event: can be retrieved at the EndOfEvent

‘L Hit class - 3

// header file: MyHit.hh

#include “G4VHit.hh* Exam p l €

class MyHit : public G4VHit {

public:
oAl MyHitO; public methods to
’ handle data member

inline void SetEnergyDeposit(G4double energy) { energyDeposit = energy; }

inline G4double GetEnergyDeposit() { return energyDeposit;}

... [/ more get and set methods

private:

G4double energyDeposit; - data member (private)
... I/ more data members

i

i Geant4 Hits

Since In the simulation one may have different
sensitive detectors in the same setup (e.g. a
calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VH1t) storing

different information

) Clas§ Hitl : | 7 = Class Hit2 :
- public G4VHit public G4VHit

Pos =
Dir =

i Hits Collection - 1

At each step in a detector defined as sensitive, the method
ProcessHi1t() of the user SensitiveDetector class Is

Inkoved: it must create, fill and store the Hit objects

X=1 X=2 X=3 X=3
Y=2 Y=0 Y=2 Y=2
T =3 T =3.1 T =4 T =6
AE =1 AE = 2 AE=3 | ~ ===n=s AE =1
\Stepl Step 2 Step 3 Step N

Hits collection (= vector<Hit>)

i Hits Collection - 2

= Once created In the sensitive detectors, objects of the

concrete hit class must be stored Iin a dedicated
collection

= Template class G4ATH1ItsCol lection<MyHIt>, which
IS actually an array of MyHIt*

s The hits collections can be accesses In different
phases of tracking

= At the end of each event, through the G4Event (a-
posteriori event analysis)

= During event processing, through the Sensitive Detector
Manager G4SDManager (event filtering)

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Hits Collections of an event

= A G4Event object has a G4AHCofThisEvent
object at the end of the event processing (if it
was successful)

= The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event: :GetHCofThisEvent() method

s The G4A4HCofThisEvent stores all hits
collections creted within the event

= Hits collections are accessible and can be processes
e.g. in the EndOfEventAction() method of the

User Event Action class

i SD and Hits

= Using information from particle steps, a
sensitive detector either
= constructs, fills and stores one (or more) hit object
= accumulates values to existing hits

= Hits objects can be filled with information In
the ProcessHits() method of the SD

concrete user class 2 next slides

= This method has pointers to the current G4Step and
to the GA4TouchableHistory of the ReadOut

geometry (if defined)

i Sensitive Detector (SD)

= A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response - customized

= To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class

= The principal purpose of the sensitive detector Is to
create hit objects

= Overload the following methods (see also next slide):
= Inttialize()
= ProcessHits() (Invoked for each step if step starts in
logical volume having the SD attached)
= EndOfEvent()

Sensitive Detector

public:

protected:

// header file: MySensitiveDetector.hh
#include “G4VSensitiveDetector.hh* |};

class G4VSensitiveDetector {

abstract base class

" virtual void Initialize (G4HCofThisEvent*);
virtual void EndOfEvent(G4HCofThisEvent*);

virtual G4bool ProcessHits(G4Step*,
GATouchableHistory*) = 0;

pure virtual method

class MySensitiveDetector : public G4VSensitiveDetector {

public: _
MySensitiveDetector(G4String name);
virtual ~MySensitiveDetector();

virtual void Initialize(G4HCofThisEvent*HCE);
virtual G4bool ProcessHits(G4Step* ste

G4Touchabﬁe’Histo * ROhist);

virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:
MyHitsCollection * hitsCollection;
G4int collectionlID;

I

User
concrete
SD class

S —

‘L SD implementation: constructor

= Specify a hits collection (by its unigue name) for each
type of hits considered in the sensitive detector:

= Insert the name(s) in the collectionName vector

MySensitiveDetector::MySensitiveDetector(G4String detectorUniqueName)
: G4VSensitiveDetector (detectorUniquename),
collectionID(-1) {

collectionName.insert(“collection_name");

}

class G4VSensitiveDetector {

protected: . _
G4CollectionNameVector collectionName;

Base class - // This protected name vector must be filled in

/l the constructor of the concrete class for
/] registering names of hits collections

5

i SD implementation: Initialize()

The Initialize() method is invoked at the beginning of each event

Construct all hits collections and insert them in the G4HCofThisEvent
object, which is passed as argument to Initialize()

= The AddHitsCollection() method of G4HCofThisEvent requires the
collection ID

The unique collection ID can be obtained with GetCollectionlID():

= GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

= Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

void MySensitiveDetector::Initialize(G4AHCofThisEvent*HCE) {
if(collectionID < 0)
collectionID = GetCollectionID(0); // Argument : order (}f collect.
// as stored in the collectionName
hitsCollection = new MyHitsCollection
(SensitiveDetectorName, collectionName[0]*

: HCE -> AddHitsCollection(collectionlID, hitsCollection);

i SD implementation: ProcessHits()

= This ProcessHits() method is invoked for every step in the
volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

= The main mandate of this method is to generate hit(s) or to
accumulate data to existing hit objects, by using information
from the current step

= Note: Geometry information must be derived from the
“PreStepPoint”

G4bool MySensitiveDetector::ProcessHits(G4Step* steE),
S _ G4TouchableHistory*ROhist) {
MyHit* hit = new MyHit(); // 1) create hit

"/l some set methods, e.g. for a tracking detector: o
G4double energyDeposit = step -> GetTotalEnergyDeposit(); // 2) fill hit
hit -> SetEnergyDeposit(energyDeposit); // See implement. of our Hit class

hitsCollection -> insert(aHit); // 3) insert in the collection
return true,

}

i SD implementation: EndOfEvent()

= This EndOfEvent() method is invoked at the
end of each event.

= Note Is invoked before the EndOfEvent function
of the G4UserEventAction class

void MySensitiveDetector::EndOfEvent(G4HCofThisEvent* HCE) {
}

i Processing hit information - 1

= Retrieve the pointer of a hits collection with the
GetHC()method of GAHCofThisEvent collection

using the collection index (a G4int number)

= Index numbers of a hit collection are unique and

don’t change for a run. The number can be obtained
by GASDManager: :GetCollectionID(*“name’);

s Notes:

= If the collection(s) are not created, the pointers of the
collection(s) are NULL: check before trying to access
it

= Need an explicit cast from G4VHitsCol lection (see
code)

i Processing hit information - 2

= Loop through the entries of a hits collection to
access individual hits
= Since the HitsCollection Is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

= Retrieve the information contained Iin this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

= Store the output in analysis objects

‘L Process hit: example

void MyEventAction::EndOfEventAction(const G4Event* event) {

// index is a data member, representing the hits collection index of the

// considered collection. It was initialized to -1 in the class constructor

if(index<0) index = retrieve
G4SDManager::GetSDMpointer() -> GetCollectionID("myDet/myColl"); index

G4HCofThisEvent* HCE = event-> GetHCofThisEvent(); } retrieve all hits

collections
MyHitsCollection* hitsColl = 0; _ _
if(HCE) hitsColl = (MyHitsCollection*) (HCE->GetHC(indeX));} retrieve hits
if(hitsColl) | ’\ collection by index
int numberHits = hitsColl->entries();
cast
for(int i%c:h&); il :hnuEnb](lerHits dil4++) {
MyHit* hit = (*hitsColl)[i1]; TR
// Retrieve information from hit object, e.g. I_oop Over individual
G4double energy = hit -> GetEnergyDeposit; hits, retrieve the data

... /l Further process and store information
}
}
}

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Recipe and strategy - 1

= Create your detector geometry
= Solids, logical volumes, physical volumes

= Implement a sensitive detector and assign an
Instance of It to the /ogical volume of your
geometry set-up
= Then this volume becomes “sensitive”

= Sensitive detectors are active for each particle steps, If
the step starts in this volume

i Recipe and strategy - 2

= Create hits objects in your sensitive detector
using information from the particle step

= You need to create the hit class(es) according to your
regquirements

= Store hits in hits collections (automatically
associated to the G4Event object)

= Finally, process the information contained in the

hit in user action classes (e.qg.
G4UserEventAction) to obtain results to be

stored In the analysis object

