
Interaction with the Geant4
kernel

Luciano Pandola
INFN-LNGS and LNS

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part V: Write information
on output files

Introduction: data analysis
with Geant4

 For a long time, Geant4 did not attempt to
provide/support any data analysis tools
 The focus was given (and is given) to the central mission

as a Monte Carlo simulation toolkit
 As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis
format

 Basic classes for data analysis have recently been
implemented in Geant4 (g4analysis)
 Support for histograms and ntuples
 Output in ROOT, XML, HBOOK and CSV (ASCII)
 Appropriate only for easy/quick analysis: for advanced

tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
simulation results

 Formatted (= human-readable) ASCII files
 Simplest possible approach is comma-separated values

(.csv) files
 The resulting files can be opened and analyzed by tools

such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, …

 Binary files with complex analysis objects (Ntuples)
 Allows to control what plot you want with modular choice

of conditions and variables
 Ex: energy of electrons knowing that (= cuts): (1)

position/location, (2) angular window, (3) primary/secondary …
 Tools: Root , PAW, AIDA-compliant (PI, JAS3 and

OpenScientist)

Output stream (G4cout)

 G4cout is a iostream object defined by Geant4.
 The usage of this objects is exactly the same as the

ordinary std::cout except that the output
streams will be handled by G4UImanager

 G4endl is the equivalent of std::endl to end a
line

 Output strings may be displayed on another
window or stored in a file

 One can also use the file streams
(std::ofstream) provided by the C++ libraries

Output on screen – an
example

 a

G4cout << "Energy deposited--->" << " " << edep << " "
<< ”Charge--->" << " " << particleCharge << " "
<< ”Kinetic Energy --->" << " " << kineticEnergy << " "

<< G4endl;

Output on screen – an
example

G4analysis tools

Native Geant4 analysis classes
 A basic analysis interface is available in Geant4 for

histograms (1D and 2D) and ntuples
 Make life easier because they are MT-compliant (no need

to worry about the interference of threads)
 Unique interface to support different output formats

 ROOT, AIDA XML, CSV and HBOOK
 Code is the same, just change one line to switch from

one to an other
 Everything done via the public analysis interface
G4AnalysisManager
 Singleton class: Instance()
 UI commands available for creating histograms at run-

time and setting their properties

g4analysis

 Selection of output format is hidden in a
user-defined .hh file

 All the rest of the code unchanged
 Unique interface

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4csv.hh" // can be used only with ntuples

#endif

Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboseLevel(1);
man->SetFirstHistoId(1);

// Creating histograms
man->CreateH1("h","Title", 100, 0., 800*MeV);
man->CreateH1("hh","Title",100,0.,10*MeV);

// Open an output file
man->OpenFile("myoutput");

}
Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

Fill histograms and close
#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs);
man->FillH1(2, fEnergyGap);

}
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Write();
man->CloseFile();

}
MyRunAction::~MyRunAction()
{
delete G4AnalysisManager::Instance();

}

ID=1

ID=2

Histograms - 1
 Support linear and log scales and un-even

bins
 CreateH2() for 2D histograms

G4int CreateH1(const G4String& name, const G4String& title,
G4int nbins, G4double xmin, G4double xmax,
const G4String& unitName = "none",
const G4String& fcnName = "none",
const G4String& binSchemeName = "linear");

G4int CreateH1(const G4String& name, const G4String& title,
const std::vector<G4double>& edges,
const G4String& unitName = "none",
const G4String& fcnName = "none");

Histograms - 2
 Can change parameters of an existing histogram
 Can fill with a weight
 Methods to scale, retrieve, get rms and mean

G4bool SetH1Title(G4int id, const G4String& title);
G4bool SetH1XAxisTitle(G4int id, const G4String& title);
G4bool SetH1YAxisTitle(G4int id, const G4String& title);

G4bool FillH1(G4int id, G4double value, G4double weight =
1.0);

G4bool ScaleH1(G4int id, G4double factor);

G4int GetH1Id(const G4String& name, G4bool warn = true) const;

Histograms - 3

 UI support available, to change parameters
(e.g. file name) at run-time

/analysis/setFileName name # Set name for the
histograms and ntuple file

/analysis/setHistoDirName name # Set name for the
histograms directory

/analysis/setNtupleDirName name # Set name for the
histograms directory

/analysis/setActivation true|false # Set activation option
/analysis/verbose level # Set verbose level

/analysis/h1/create
name title [nbin min max] [unit] [fcn] [binScheme] #

Create 1D histogram

Ntuples

 g4tool supports ntuples
 Any number of ntuples, each with any number

of columns
 The content can be int/float/double

 For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

 Similar strategy as for histograms. Access
happens through the common interface
G4AnalysisManager
 Saved on the same output file with histograms

Book ntuples
#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man-> SetFirstNtupleId(1);

// Creating ntuple
man->CreateNtuple("name", "Title");
man->CreateNtupleDColumn("Eabs");
man->CreateNtupleDColumn("Egap");
man->FinishNtuple();

man->CreateNtuple("name2","title2");
man->CreateNtupleIColumn("ID");
man->FinishNtuple();

}

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples

 File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillNtupleDColumn(1, 0, fEnergyAbs);
man->FillNtupleDColumn(1, 1, fEnergyGap);
man->AddNtupleRow(1);

man->FillNtupleIColumn(2, 0, fID);
man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

Part VI: User-defined sensitive
detectors: Hits and Hits
Collection

The ingredients of user SD
 A powerful and flexible way of extracting information

from the physics simulation is to define your own SD
 Derive your own concrete classes from the base

classes and customize them according to your needs

Concrete class Base class

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit*>

Hit class - 1

 Hit is a user-defined class which derives from the
base class G4VHit. Two virtual methods
 Draw()
 Print()

 You can store various types of information by
implementing your own concrete Hit class

 Typically, one may want to record information like
 Position, time and E of a step
 Momentum, energy, position, volume, particle type of

a given track
 Etc.

Hit class - 2

A “Hit” is like a “container”, a empty box which
will store the information retrieved step by step

The Hit concrete class (derived by
G4VHit) must be written by the user: the
user must decide which variables and/or
information the hit should store and when

store them

X =

Y =

T =

E =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors
defined as sensitive). Stored in the “HitCollection”, attached

to the G4Event: can be retrieved at the EndOfEvent

Hit class - 3

Example

data member (private)

public methods to
handle data member

Geant4 Hits

Since in the simulation one may have different
sensitive detectors in the same setup (e.g. a

calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHit) storing

different information

X =

Y =

T =

E =

Class Hit1 :
public G4VHit

Z =

Pos =

Dir =

Class Hit2 :
public G4VHit

Hits Collection - 1
At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is
inkoved: it must create, fill and store the Hit objects

X = 1

Y = 2

T =3

E = 1

Step 1

X = 2

Y = 0

T =3.1

E = 2

Step 2

X = 3

Y = 2

T =4

E = 3

Step 3

X = 3

Y = 2

T =6

E = 1

Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2

 Once created in the sensitive detectors, objects of the
concrete hit class must be stored in a dedicated
collection
 Template class G4THitsCollection<MyHit>, which

is actually an array of MyHit*

 The hits collections can be accesses in different
phases of tracking
 At the end of each event, through the G4Event (a-

posteriori event analysis)
 During event processing, through the Sensitive Detector

Manager G4SDManager (event filtering)

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

E = 1

X = 2

Y = 0

T =3.1

E = 2

X = 3

Y = 2

T =4

E = 3

X = 3

Y = 2

T =6

E = 1.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an event

 A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)
 The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event::GetHCofThisEvent() method

 The G4HCofThisEvent stores all hits
collections creted within the event
 Hits collections are accessible and can be processes

e.g. in the EndOfEventAction() method of the
User Event Action class

SD and Hits

 Using information from particle steps, a
sensitive detector either
 constructs, fills and stores one (or more) hit object
 accumulates values to existing hits

 Hits objects can be filled with information in
the ProcessHits() method of the SD
concrete user class next slides
 This method has pointers to the current G4Step and

to the G4TouchableHistory of the ReadOut
geometry (if defined)

Sensitive Detector (SD)

 A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response customized

 To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class
 The principal purpose of the sensitive detector is to

create hit objects
 Overload the following methods (see also next slide):

 Initialize()
 ProcessHits() (Invoked for each step if step starts in

logical volume having the SD attached)
 EndOfEvent()

Sensitive Detector

User
concrete
SD class

SD implementation: constructor

 Specify a hits collection (by its unique name) for each
type of hits considered in the sensitive detector:
 Insert the name(s) in the collectionName vector

Base class

SD implementation: Initialize()
 The Initialize() method is invoked at the beginning of each event
 Construct all hits collections and insert them in the G4HCofThisEvent

object, which is passed as argument to Initialize()
 The AddHitsCollection() method of G4HCofThisEvent requires the

collection ID
 The unique collection ID can be obtained with GetCollectionID():

 GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

 Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

SD implementation: ProcessHits()
 This ProcessHits() method is invoked for every step in the

volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

 The main mandate of this method is to generate hit(s) or to
accumulate data to existing hit objects, by using information
from the current step
 Note: Geometry information must be derived from the

“PreStepPoint”

// 1) create hit

// 2) fill hit

// 3) insert in the collection

G4bool

SD implementation: EndOfEvent()

 This EndOfEvent() method is invoked at the
end of each event.
 Note is invoked before the EndOfEvent function

of the G4UserEventAction class

Processing hit information - 1

 Retrieve the pointer of a hits collection with the
GetHC()method of G4HCofThisEvent collection
using the collection index (a G4int number)

 Index numbers of a hit collection are unique and
don’t change for a run. The number can be obtained
by G4SDManager::GetCollectionID(“name”);

 Notes:
 if the collection(s) are not created, the pointers of the

collection(s) are NULL: check before trying to access
it

 Need an explicit cast from G4VHitsCollection (see
code)

Processing hit information - 2

 Loop through the entries of a hits collection to
access individual hits
 Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

 Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

 Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits
collection by index

loop over individual
hits, retrieve the data

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

E = 1

X = 2

Y = 0

T =3.1

E = 2

X = 3

Y = 2

T =4

E = 3

X = 3

Y = 2

T =6

E = 1.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Recipe and strategy - 1

 Create your detector geometry
 Solids, logical volumes, physical volumes

 Implement a sensitive detector and assign an
instance of it to the logical volume of your
geometry set-up
 Then this volume becomes “sensitive”
 Sensitive detectors are active for each particle steps, if

the step starts in this volume

Recipe and strategy - 2

 Create hits objects in your sensitive detector
using information from the particle step
 You need to create the hit class(es) according to your

requirements
 Store hits in hits collections (automatically

associated to the G4Event object)
 Finally, process the information contained in the

hit in user action classes (e.g.
G4UserEventAction) to obtain results to be
stored in the analysis object

