Generic MC Generator for $e^+e^- \to \text{Hadrons at } \sqrt{s} < 2 \text{ GeV}$

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and
Novosibirsk State University,
Novosibirsk, Russia
(for the Belle Collaboration)

Outline

- 1. Concept
- 2. Some results
- 3. Summary

$$e^+e^- \to K^+K^-\pi^0$$

There is a new generator for $e^+e^- \to K\bar{K}\pi$ developed by V. Ivanov

$$\sigma \propto |A_{\phi\pi} + A_{K^*K} + A_{\rm dir}|^2$$

Other K*'s with higher mass are also possible.

Interference effects are very important!

Amplitude vs. Phase

S.Eidelman, BINP p.3/11

Dalitz Plot

S.Eidelman, BINP p.4/11

S.Eidelman, BINP

Concept of a Generic MC for Multihadrons Below 2 GeV

Developed by A. Korobov

- There is a need for a generic MC generator approximately reproducing real picture of $e^+e^- \to \text{hadrons below 2 GeV}$
- Such generators exist for higher energy ranges: LUND, PYTHIA, ... based on a complicated scheme of quark and gluon hadronization and provide events of $e^+e^- \rightarrow q\bar{q}$, q=u,d,s,c,b
- These generators are used for background estimation
- One can't create a generator based on first principles at low energy \Rightarrow Existing data on cross sections should be used

Algorithm

- A database of all σ measurements created
- Energy dependence of σ for each exclusive final state is approximated by a physically motivated analytic function $f_i(s)$
- Event generation:
 - $\sigma_{\text{tot}}(s) = \sum f_i(s)$ calculated at needed \sqrt{s} based on $f_i(s)$
 - A random number specifying the final state is sampled
 - An event of the specific process is sampled based on the corresponding dynamics

Processes Considered – I

Process	σ	ME	Process	σ	ME
$\pi^+\pi^-$	+	$+^{a}$	$2\pi^{+}2\pi^{-}\pi^{0}$	+	PS
$\pi^{+}\pi^{-}\pi^{0}$	+	$+^{\mathrm{b}}$	$\pi^{+}\pi^{-}3\pi^{0}$	IR	PS
$\pi^+\pi^-\pi^+\pi^-$	+	$+^{c}$	$3\pi^{+}3\pi^{-}$	+	PS
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	+	$+^{\mathrm{d}}$	$2\pi^+2\pi^-2\pi^0$	+	PS
_		_	$\pi^+\pi^-4\pi^0$	IR	PS

Processes Considered – II

Process	σ	ME	Process	σ	ME
K^+K^-	+	+ ^a	$K^+K^-\pi^+\pi^-$	+	PS
$K_S^0 K_L^0$	+	$+^{\mathrm{b}}$	$K^{+}K^{-}\pi^{0}\pi^{0}$	+	PS
$K^+K^-\pi^0$	+	PS	$K^{\pm}K^0_S\pi^{\mp}\pi^0$	IR	PS
$K^0_S K^0_L \pi^0$	IR	PS	$K^{\pm}K_L^0\pi^{\mp}\pi^0$	IR	PS
$K^{\pm}K^0_S\pi^{\mp}$	+	PS	$K^0ar{K}^0\pi^+\pi^-$	IR	PS
$K^{\pm}K_L^0\pi^{\mp}$	IR	PS	$K^0ar{K}^0\pi^0\pi^0$	IR	PS

Processes Considered – III

Process	σ	ME	Process	σ	ME
$\pi^0\gamma$	1	-	$p\overline{p}$	ı	-
$\eta \gamma$	1	-	$n\overline{n}$	-	-
$\pi^0\pi^0\gamma$	-	-	$\pi^+\pi^-\eta$	-	-
$\eta\pi^0\gamma$	ı	-	$K^+K^-\eta$	-	-
_		_	$\pi^+\pi^-\pi^0\eta$	I	-

Also just included are new channels from BaBar with K_S^0 mesons

Can We Go to Higher \sqrt{s} ?

- The range from 2 to 3 GeV is important for g-2 and even more for $\alpha(M_Z^2)$
- We are using inclusive method and are very sensitive to the model to calculate the acceptance
- There are a lot of ISR data from BaBar for $2 < \sqrt{s} < 3$ GeV, more will soon start coming from BESIII
- Should we try to move to 3 GeV with the generator I described and compare its exclusive approach to inclusive (H.Hu)?
- We should try new channels like 7-8 pions, 4 kaons plus pions etc.
- Can we move to 3 GeV in the exclusive approach?