15th meeting of the WG Radio Monte CarLow

H. Czyz/G. Venanzoni

Mainz 11 April 2014

Agenda

Introduction (10:00-10:20)

- Presenters: VENANZONI, Graziano

Radiative Correction and MC I (10:20-11:00)

time [id] title	presenter
10:20 [21] The electronic width of the X(3872)	RIPKA, Martin
10:40 [22] Production of 1++ meson in a e+e- machine	LIU, Zhiqing

Coffee Break (11:00-11:30)

Radiative Corrections and MC II (11:30-12:30)

time	[id] title	presenter
11:30	[23] MC generator comparison of Babayaga@NLO, Babayaga.3.5, and BHWIDE	HAFNER, Andreas
11:50	[24] Towards a Precision Measurement of the Muon Pair Asymmetry in e+e- Annihilation at Belle and Belle 2	FERBER, Torben
12:10	[20] Monte Carlo Generators for the study of e+e> 2(pi+pi-pi0) process with CMD-3 detector	LUKIN, Peter

Lunch (12:30-14:00)

Agenda

Radiative Corrections and MC III (14:00-15:30)

time	[id] title	presenter
14:00	[25] Update on the combined estimate of KLOE ISR measurements	MUELLER, Stefan
14:20	[26] Precision tests of unitarity in leptonic mixing	VAN DER BIJ, Jochum
14:40	[27] Gradient method with re-weighted events and its implementation in Tauolo to fit the three pion mode	ZAREMBA, Jakub

Coffee Break (15:30-16:00)

Discussion on HPrecisionNet (16:00-17:30)

- Conveners: Kupsc, Andrzej

An important news from the last meeting is the application to H2020 within the networking program HPH. Our Work package is HPrecisionNet

Many thanks to Andrzej who coordinated all these efforts

In the afternoon we will have a dicussion on that

HadronPhysicsHorizon (HPH)

A. WORK PACKAGE DESCRIPTION

(maximum length: 4 pages)

Work package number	WP26	Start date	2015-01-01	
Activity Type	COORD			
Activity number and acronym	HPrecisionNet			
Work package title	Precision Hadron Physics: From Intrinsic Structure to Physics Beyond the			
ччы к раскаде шие	Standard Model			

Usual propaganda:

The paper "Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data" has been published on the Eur. Phys. J. C. Volume 66, Issue 3 (2010), Page 585

Thanks again to all authors!!!

Remember to quote the paper

How to reach <1% on $\sigma_{\rm HAD}$?

- Improve experimental accuracy
 - Systematic errors under control?
- Improve theory:
 - RC?
 - Modelling of hadron-photon interaction?
- Tuning comparison of MC generator very important:
 - For luminosity this was done;
 - For ISR and scan still the situation is unsatisfactory, and we should try to improve it.
 - FSR modelling should be improved

HLbL contribution can be a limiting factor for the calculation of a_{μ}

- As today $\delta a_{\mu}^{LbL} = [2.5-4]10^{-10}$
- δa^{BNL} =610⁻¹⁰→1.5 10⁻¹⁰
- How to improve? $\gamma\gamma$ physics can help?
- γγ physics is/will be done at (Super)Bfactory, KLOE-2 and BESIII with dedicated detectors, in a region where data are scarse
- Also $e+e- \rightarrow PS\gamma$
- A systematic study which uses data is proposed in arXiv:1402.7081 (G. Colangelo et al.)

These weeks 2 important workshops in Mainz

• "Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction", Mainz, 1-5 April 2014:

<u>https://indico.mitp.uni-mainz.de/conferenceDisplay.py?</u> <u>ovw=True&confld=13</u>

• "(g-2)mu: Quo vadis?", Mainz, 7-10 April 2014: https://indico.cern.ch/event/284012/overview

Outcomes/results/challenges?

• Dinner this evening:

- It will be in the Bar/Restaurant "Heilig Geist" downtown at 7:30 pm: <u>http://www.heiliggeist-mainz.de/</u>
- It is located in Mailandsgasse 11 behind the Gutenberg Museum in closest vicinity to the cathedral (Dom) and the Rhine river.
- Cost ~ per person
- Data and place for next meeting:
 - Aachen, Germany as satellite of Tau14 (15-19 September 2014)
 - Frascati, Italy as satellite of Mesonnet Workshop (xx September 2014)
 - Other places?

Have a nice meeting!!!!

spare

Structure of the WG

- Luminosity (G. Montagna, F. Nguyen)
- R scan (A. Arbuzov, G. Fedotovich)
- ISR (H. Czyz, G. Venanzoni)
- Tau (Z. Was, D. Epifanov)
- Hadronic VP, g-2 and ∆a_{em} (T. Teubner, S. Eidelman)
- gamma-gamma physics(S. Ivashin, D. Moricciani)
- FSR models (S. Gorini, A. Denig)

Ultimate goal of σ_{HAD} : 1% up to J/ ψ (Ψ (4s)?)

Which is the situation on MC above 1 GeV? (see S. Eidelman presentation)

Contribution of different energy regions to the dispersion integral and the error to a_u^{had}

contributions

Experimental errors on σ^{had} translate into theoretical uncertainty of a_{μ}^{had} !

→ Needs precision measurements!

A rough estimate for g-2

$$\delta a_{\mu}^{HLO} = 5.29 = 3.0(\sqrt{s} < 1 \text{GeV}) \oplus 3.9(1 < \sqrt{s} < 2 \text{GeV})$$
 FJ08

$$\delta a_{\mu}^{\text{HLO}}$$
 →3=2.5 (√s<1GeV) \oplus 1.5 (√s<1GeV)
This means:
 $\delta \sigma_{\text{HAD}}$ ~ 0.4% √s<1GeV (instead of 0.7% as now))
 $\delta \sigma_{\text{HAD}}$ ~ 2% 1<√s<2GeV (instead of 6% as now))

Precise measurement of σ_{HAD} at low energies very important also for α_{em} !!!