

Produce a 1⁺⁺ charmonium - χ_{c1} in e⁺e⁻ machine

Achim Denig, Benedikt Kloss and Zhiqing Liu

JGU Mainz

liuz@uni-mainz.de

- So far in e+e- annihilation only vector resonances with quantum numbers
 J^{PC}=1⁻⁻ have been produced
- Excellent performace of BEPC II and BESIII detector offer the opportunity to measure process $e^+e^- \rightarrow \chi_{c1}$ (1⁺⁺) through a two-photon production for the first time.

JG

- Two-photon coupling to (c c̄) provide unique input to theoretical understanding of charmonium(-like) resonances.
- Strategy:
 - I) Establish method with a well-known charmonium state $e+e- \rightarrow X_{c1}$
 - II) Embark on a search e+e- \rightarrow X(3872) also 1⁺⁺
- Production cross section given by electronic width Γ_{ee} So far a few info. on Γ_{ee} existing!
 - → Sensitive parameter to understand nature of X(3872) and eventually other exotics ?!

• χ_{c1} Parameters:

4

Mass χ_{c1} = 3510.66±0.07 MeV Width χ_{c1} = 0.86±0.05 MeV Dominant decay channel (34.4%): $\chi_{c1} \rightarrow \gamma J/\psi$

Electronic width unknown (from H. Kühn @ Phipsi13, Rome)

→ ~1 order of magnitude uncertainty: unitarity limit: $\Gamma_{ee}^{min} = 0.044 \text{ eV}$ →Cross section > 10 pb taking into account ISR and beam energy spread (....not so small !)

■ BABAR measured e+e- $\rightarrow \rho^0 \rho^0$, possible via two-photon process! Process can be well described by VMD model (Davier, Peskin, Snyder)

 \rightarrow Use same model also for cross section estimate: $\Gamma_{ee}^{VMD} = 0.46 \text{ eV}$

Channel $e^+e^- \rightarrow \gamma \mu^+ \mu^-$ extremely well known in BESIII !

→by B. Kloss

Agreement: Δ(Data-MC)=(0.5±0.3)%

Selection:

- at least 1 photon
- 2 tracks with Muon PID
- 4C kinematic fit, $\chi^2 < 30$
- 3.05 GeV < m_{µµ} < 3.15 GeV</p>

7

Determination of the signal cross section:

Bare peak cross section 637 pb

Taking into account ISR corrections and beam energy spread (1.47 MeV, estimated by tau mass scan data).

 \rightarrow cross section 115pb

\mathbf{V}

- Taking into account the BRs for the final state $\mu\mu\gamma$ \rightarrow cross section 2.42 pb
- Finally taking into account the efficiency (~65%)
 Final effective signal cross section σ^{eff} = 1.57 pb

Background

- Irreducible background: ISR production of J/ψ: (different polar angle distribution of photon)
 → existing MC generator PHOKHARA7.0
- Additional background $e^+e^- \rightarrow \gamma_{ISR} \mu^+\mu^-$? → look into data distributions from existing tau-mass scan data $\sqrt{s}=3.542$ GeV and $\sqrt{s}=3.561$ GeV in vicinity to mass of χ_{c1}

excellent agreement, no indication of additional background
effective background cross section 19 pb

- Measure only on resonance -> background known!
- Signal to Background Ratio 1.57 : 19 = 8.3%
- Assuming BEPC II performance: 15 pb⁻¹ / day

Significance	Luminosity	Data taking time
1 sigma	8.4 pb^{-1}	13.4 h
2 sigma	33.4 pb^{-1}	53.4 h
3 sigma	75.1 pb^{-1}	120.2 h
$4 \operatorname{sigma}$	133.5 pb^{-1}	213.6 h
5 sigma	208.6 pb^{-1}	333.8 h

Proposal: 2 weeks of beam time!

Radiative photon in $e^+e^- \rightarrow \chi_{c1} \rightarrow \gamma J/\psi$ goes predominantly via E1 transition

12

- First search of e+e- → 1⁺⁺ in reach at BESIII
 → Great potential Especially regarding X(3872)
- Background for this measurement: ISR production of J/ ψ \rightarrow Precision MC is available (Phokhara 7), well understood
- Search for the signal reaction via ISR limited by statistics
 → Proposed direct production

With 2 weeks of beam time at BESIII \rightarrow New Discovery !