Electronic width of X(3872)

Achim Denig, Zhiqing Liu, Martin Ripka for the BESIII Collaboration

Institut für Kernphysik, JGU Mainz

March 20, 2013

Motivation

- Recently discovered exotic charmonium like states XYZ
- What is the substructure of the X(3872)?

http://ellipsix.net/blog/tagged/Belle.html

- Electronic width: $\sigma(X(3872) \leftrightarrow \ell\ell) \sim \Gamma_{ee} \sim \psi(\vec{x} = 0)$
- Electronic width expected to be a model specific feature
- Theoretical predictions under construction
- More precise value of electronic width may rule out some models for structure
- Measuring Electronic width of X(3872) at BESIII

Technique of Analysis I

- X(3872) is not a vector resonance, it has $J^{PC} = 1^{++}$
- Problem: X(3872) can not be produced in an e^+e^- annihilation
- Trick: production via box diagram

- ullet $\mathcal{L}_{int} pprox 3\,\mathrm{fb}^{-1}$ data at 4 energy points above 4 GeV at BESIII
- Problem: No data at 3.872 GeV
- Solution: Initial State Radiation

ISR Technique I

 \bullet e^- or e^+ can radiate a photon before collision

- ullet Emission of ISR photons is suppressed by α/π
- Center of mass energy for collision reduced
- Acceptance of BESIII calorimeter: $|\cos \theta| \le 0.93$
- Two analysis modes: ISR tagged, ISR untagged

ISR Technique II

Tagged Analysis

- $J/\psi \pi^+ \pi^-$ reconstructed
- ISR photon measured
 - \Rightarrow All particles detected

Untagged Analysis

- only $J/\psi \pi^+\pi^-$ reconstructed
- predict 4-momentum of ISR photon by demanding 4-momentum conservation

ISR untagged mode to avoid background from radiative decay $e^+e^- \rightarrow Y(4260) \rightarrow \gamma X(3872)$

Technique of Analysis II

• Decay mode:

$$e^+e^- \longrightarrow X(3872)\gamma_{ISR} \longrightarrow \pi^+\pi^-J/\psi\gamma_{ISR}$$

 $\longrightarrow \pi^+\pi^-\ell^+\ell^-\gamma_{ISR}$, $\ell=\mu,e$

- dominating background: $e^+e^- \longrightarrow \psi(2S)\gamma_{ISR}$ (well known!)
- Relation between radiative cross section and non radiative cross section

$$\frac{d\sigma_{X\gamma}}{dm} = \frac{2m}{s} W(s, m) \sigma_X(m)$$

J/ψ Reconstruction I

- pions and leptons are well separated by momentum
- leptons have $p > 1.2 \, GeV$

J/ψ Reconstruction II

- pions and leptons are well separated by momentum
- muons and electrons are well separated by E/p

PID for J/ψ reconstruction

 χ^2_{2C} of $\pi^+\pi^- J/\psi$ Fit

- ullet 2C kinematic fit: $m_{miss}=0$, $m_{\ell^+\ell^-}=m_{J//psi}$
- Rejecting $\chi^2_{2C} > 15$
- Shape of χ^2_{2C} distribution \Rightarrow no additional background

Cross check with Previous Measurements (Tagged Mode)

- $19 \pm 0.9 \ X(3872)$ events observed by direct count
- In agreement with previous result of BESIII Collaboration on $Y(4260) \rightarrow \gamma X(3872)$ Phys. Rev. Lett. 112, 092001

Untagged $m_{J/\psi\pi\pi}$ Spectrum

• Fitting $m_{J/\psi\pi^+\pi^-}$ mass spectrum with double Gaussian for $\psi(2S)$ + Gaussian for X(3872) + linear background

Determine Γ_{ee} upper Limit I

Number of observed X(3872) given by:

$$\frac{dN_A^{\text{obs}}}{dx} = \mathcal{L}\varepsilon_A W(s, x) \sigma^A(m(s, x)) \mathcal{B}(A \to f)$$

$$\Rightarrow N_A^{\text{obs}} = \varepsilon_A \mathcal{L}\Gamma_{ee}^A \mathcal{B}(A \to f) I_A$$

- for A = X(3872), $\psi(2S)$.
- ε_A is the reconstruction efficiency

•
$$I_A = \int b_A(m(s,x))W(s,x)dx$$
 , $x = 1 - m^2/s$

- W(s,x) is the radiator function
- $b_A(m)$ is the relativistic Breit-Wigner function over Γ_{ee}^A

$$\Gamma_{ee,1}^{A} = \frac{N_A^{\text{obs}}}{\mathcal{L} \varepsilon_A I_A \mathcal{B}(A \to \pi^+ \pi^- J/\psi) \mathcal{B}(J/\psi \to \ell^+ \ell^-)}$$

$$\Gamma^{X}_{ee,2} = \Gamma^{\psi(2S)}_{ee} \frac{N_{X}^{\text{obs}}}{N_{\psi(2S)}^{\text{obs}}} \frac{\varepsilon_{\psi(2S)}}{\varepsilon_{X}} \frac{I_{\psi(2S)}}{I_{X}} \frac{\mathcal{B}(\psi(2S) \to \pi^{+}\pi^{-}J/\psi)}{\mathcal{B}(X \to \pi^{+}\pi^{-}J/\psi)}$$

Final Result

- No X(3872) signal found, only upper limit
- Log Likelihood Scan of X(3872) peak parameter for 90 % C.L. performed
- Combine the four measurements by summing up their logarithmic likelihoods
- Analysis in referee stage, cannot yet show final result here
- Good improvement compared to current PDG value: $\Gamma_{\text{ee}}^{X(3872)} < \mathcal{O}(\text{eV})$

Thank you for your attention!