15 th Working Group on Rad. Corrections and MC Generators for Low Energies

Monte Carlo generators for the study of the process $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)$ with the CMD-3 detector

Peter A. Lukin BINP & Novosibirsk State University

Institute für Kernphysik, University of Mainz, 11th of April 2014

Introduction Generators Mass distributions Angular distributions Plans

Introduction

 $\frac{VEPP-2000}{2E = 0.32 - 2.0 \text{ GeV}}$ Round beams L = 2.10³¹ cm⁻² · c⁻¹at 1.8 GeV

<u>CMD-3</u>

DC – drift chamber, ZC – Z-chamber SC solenoid, B = 1.3 T LXe – LXe calorimeter (400 l) TOF – Time of Flight system Csl – Csl calorimeter (1152 cr) BGO – BGO calorimeter (680 cr) MU – muon range system

Generators

To calculate detection efficiency for $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)$ we have to correctly describe angular correlations between particles

At least we need: - ω(782)3π - ω(782)η - ρ(770)4π

Mass dístríbutions

Angular distributions

Points with errors – experimental data @ $E_{cm} = 1720 \text{ M} \Rightarrow B$ Histogram - model: $61\% \omega 3\pi + 27\% \rho 4\pi + 12\% \omega \eta$

What else do we see ?

Conclusion and plans

✓ Three Monte Carlo Generators ($e^+e^- \rightarrow \omega 3\pi$, $\omega(782)\eta$, $\rho(770)4\pi$) have been created for study of the process $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)$

✓ Dynamics of e⁺e⁻ →2($\pi^+\pi^-\pi^0$) is satisfactorily described by these 3 contributions up to E_{cm} = 1.7 GeV.

✓ For desciption of the dynamics in $E_{cm} = 1.7 - 2.0$ GeV energy range new generators are needed (i.e. $e^+e^- \rightarrow \eta 3\pi$, $a0(980)\rho$, ...) ✓ Preliminary investigation demonstrates completely different mechanism of the $2(\pi^+\pi^-\pi^0)$ final state production versus $3(\pi^+\pi^-)$ final state.

✓ Approach for measurement of intermediate contribution cross sections has been developing

Stay tuned! Thank You!