Precision tests of unitarity in leptonic mixing

J. J. van der Bij Institut für Physik Albert-Ludwigs Universität Freiburg

> Radio MC Working group Mainz, 11 april 2014

L. Basso, O. Fischer and J. J. van der Bij; Europhysics letters: EPL, **105** (2014) 11001; doi: 10.1209/0295-5075/105/11001.

Overview

- Status of the standard model
- Sterile neutrinos
- Precision observables
- Precision test of the standard model
- Precision test of standard model plus sterile neutrinos
- Summary and conclusion

Importance of the LHC results

- The standard model Higgs boson has been discovered.
- ▶ No new physics, carrying standard model charges at the weak scale, appears to be present.
- Therefore only limited extensions of the standard model are possible.

Theory predictions:

- Precision predictions are sensitive to radiative corrections dependent on m_H.
- ▶ Higgs mass before the LHC: 110 GeV $\leq m_H \leq$ 160 GeV.
- ▶ The knowledge of m_H fixes the radiative corrections.
- ► The quantitative comparison of precision data with predictions is now possible at a much higher level than ever before !

Sterile neutrinos

The model:

- n neutral (sterile) fermions (Dirac or Majorana)
- ▶ Mixing with left-handed neutrinos of the standard model
- PMNS matrix is a part of the general mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata)

Motivation:

- Provide dark matter candidates
- Baryogenesis via leptogenesis
- Essentially invisible at the LHC
- ▶ Right-handed neutrinos and *PMNS* matrix exist

The PMNS matrix

Mass eigenstates and flavour basis ($\alpha = e, \mu, \tau$): $\{\nu_i = \nu_{L_\alpha}, N_n\}$ expressed via a unitary $(3 + n) \times (3 + n)$ matrix:

$$\left(\begin{array}{c} \nu_1 \\ \vdots \\ \nu_{3+n} \end{array}\right) = \left(\begin{array}{cc} \textit{PMNS} & \mathcal{W} \\ \mathcal{W}^\dagger & \mathcal{V} \end{array}\right) \left(\begin{array}{c} \nu_{L_e} \\ \vdots \\ N_n \end{array}\right) \; .$$

- Unitarity of PMNS as submatrix not generally true
- ▶ Definition of the ϵ parameters:

$$\epsilon_{\alpha} = \sum_{i>3} |\mathcal{U}_{\alpha i}|^2 = 1 - \sum_{\beta} |\mathcal{U}_{\alpha \beta}|^2.$$

Low energy parameters

The theory prediction for meson decays is dependent on the ratio:

$$\frac{g_{\alpha}}{g_{\beta}} = 1 - \frac{\epsilon_{\alpha} - \epsilon_{\beta}}{2}.\tag{1}$$

The epsilon parameters modify the Fermi constant via the following relation:

$$G_{\mu}^{2} = G_{F}^{2}(1 - \epsilon_{e})(1 - \epsilon_{\mu}),$$
 (2)

with G_{μ} the Fermi constant measured in muon decay, and G_F the theoretical Fermi parameter.

They also affect the unitarity of the Cabibbo-Kobayashi-Maskawa matrix:

$$CKM = 1 + \epsilon_{\mu} \,, \tag{3}$$

High energy parameters

Observable	Experiment	standard model	
$(g_{\mu}/g_e)_{ au}$	1.0020(16)	1.0	
$(g_{ au}/g_e)_{ au}$	1.0029(21)	1.0	
$(g_{\mu}/g_e)_{\pi}$	1.0021(16)	1.0	
$(g_{ au}/g_{\mu})_{\pi}$	0.9965(33)	1.0	
CKM	0.9999(6)	1.0	
M_W (GeV)	80.385(15)	80.359(11)	
$\Gamma_{\mathrm{inv}}/\Gamma_{\mathrm{lept}}$	5.942(16)	5.9721(2)	
$\Gamma_{ m lept}$ (MeV)	83.984(86)	84.005(15)	
Seff 2,hadr	0.23113(21)	0.23150(1)	
s _{eff} 2,hadr	0.23222(27)	0.23150(1)	

Table: Experimental results and standard model prediction for lepton universality and electroweak observables.

Observable	χ^2_{SM}	χ^2_T	χ^2_ϵ	$\chi^2_{\epsilon+T}$
$(g_{\mu}/g_e)_{ au}$	19.8	18.8	17.5	17.4
$(g_{ au}/g_e)_{ au}$	20.3	19.3	14.0	13.5
$(g_{\mu}/g_e)_{\pi}$	19.7	18.6	17.4	17.2
$(g_ au/g_\mu)_\pi$	20.0	19.0	17.3	17.3
CKM	21.3	20.3	15.9	15.2
M_W (GeV)	19.4	19.4	16.9	11.6
$\Gamma_{ m inv}/\Gamma_{ m lept}$	17.8	16.9	15.8	15.4
$\Gamma_{ m lept}$ (MeV)	21.4	20.2	17.6	17.5
seff	18.2	18.1	16.2	16.0
s _{eff}	14.2	10.5	5.3	5.3
Total χ^2	21.3	20.3	18.0	18.0

Table: The χ^2 for the standard model (χ^2_{SM}) , the minimum with unitarity violation (χ^2_{ϵ}) , with unitarity violation and the T parameter $(\chi^2_{\epsilon+T})$, and the T parameter only, are evaluated *excluding* the entry on each line. The total χ^2 (considering all entries) is given for reference.

Hypothesis testing: Standard Model

Selected set of precision data

 $\text{High energy observables: } \left\{ \textit{M}_{W}, \frac{\Gamma_{\textit{inv}}}{\Gamma_{\textit{lept}}}, \Gamma_{\textit{lept}}, s_{\text{eff}}^{2, \text{lept}}, s_{\text{eff}}^{2, \text{hadr}} \right\}$


Low energy observables: $\left\{ \left(\frac{g_{\mu}}{g_{e}} \right)_{\tau}, \left(\frac{g_{\tau}}{g_{e}} \right)_{\tau}, \left(\frac{g_{\mu}}{g_{e}} \right)_{\pi}, \left(\frac{g_{\tau}}{g_{\mu}} \right)_{\pi}, \operatorname{CKM} \right\}$

Statistical χ^2 analysis:

- Fit result: $\chi^2/\text{dof} = 21.3/10$
- Likelihood of data described by prediction: less than 2%

Alternative (controversial) fit:

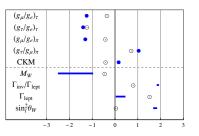
- Removing one data point in turn
- ▶ Best fit for $\{s_{eff}^{2,hadr}\}$ removed: $\chi^2/dof = 14.2/9$
- ▶ Likelihood of data minus $\{s_{eff}^{2,hadr}\}$ described by prediction: 13%.

A word on statistics

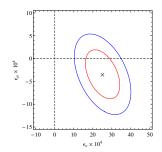
Data and uncertainty:

- ▶ Weighting of data via uncertainty⁻²
- Large uncertainty means tiny contribution to the χ^2
- ▶ NuTeV, W and kaonic decays have large errors
- \Rightarrow Inclusion of **all** data leads to a **dilution** of the $\chi^2/d.o.f$

Removing a data point:

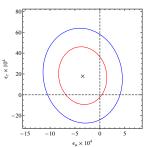

- s^{2,hadr}_{eff} inferred from hadronic measurements
- ▶ A posteriori justification: Considerable change of χ^2
- Hint: underlying systematics (e.g. underestimated uncertainty)
- 1. Standard model disfavoured by precision data
- 2. however good overall consistency with data
- 3. Sterile neutrinos can remedy 1. without spoiling 2.

Hypothesis testing: Non-unitary lepton mixing


Analysis with ϵ parameters:

- ▶ Total fit: $\chi^2/\text{dof} = 18.0/7$
- ► Corresponding likelihood: 1.5%
- ▶ Best fit for {s^{2,hadr}_{eff}} removed
- $\sim \chi^2/\text{dof} = 5.3/5$

- \Rightarrow Likelihood that data without $\{s_{eff}^{2,hadr}\}$ is described by the Standard Model plus non-unitary lepton mixing is 50%.
- ⇒ Inclusion of oblique parameters barely improves the fit.


The unitarity violation parameters

Quantify mixing and universality:

- ϵ_{e} non zero at $\sim 3\sigma$
- ϵ_{μ} small, compatible with zero
- $\epsilon_{ au}$ not well constrained

Experimental constraints on sterile neutrinos

Probing the model further:

- $\qquad \qquad \bullet_{e} + \epsilon_{\mu} + \epsilon_{\tau} \neq \left(UU^{\dagger} \right)_{e\mu} + \left(UU^{\dagger} \right)_{e\tau} + \left(UU^{\dagger} \right)_{\mu\tau}$
- \blacktriangleright Rare decays like $\mu \to \mathit{e}\, \gamma$ cannot be assessed
- New constraint on models with lepton unitarity violation
- ▶ Direct neutrino mixing experiments still too imprecise

Neutrinoless double beta decay:

- No constraints if Dirac fermions
- lacktriangle Masses $\mathcal{O}(100\ \text{TeV})$ and/or PMNS cancellations if Majorana

See-saw models:

- Mixing $\sim \epsilon_e$ too large for type-I see-saw
- Strong cancellations in the PMNS matrix required

Summary and Conclusions

- Measurement of the Higgs boson mass makes precision tests meaningful.
- Standard Model cannot explain discrepancies in precision data.
- Removing s^{2,hadr}_{eff} improves consistency between data and theory.
- ▶ 3.0 σ evidence for lepton unitarity violation of $\mathcal{O}(10^{-3})$.
- Indication for mixing of left-handed neutrinos with sterile neutrinos.
- Additional oblique corrections are unnecessary.

Outlook

- Clarification of the discrepancy between s_{eff}^{2,hadr} and s_{eff}^{2,lept}, Mainz, JLab;
- ▶ Tau-factories: improved precision of τ -decays, Peking;
- ▶ LHC: improved measurement of M_W;
- Higher order theoretical calculations;
- new beamdump experiment at CERN, snoopy.
- \Rightarrow More than 5σ for ϵ_e possible.
- ⇒ Sterile neutrino model becomes *predictive*.

Precision = Discovery !!