Update on the combined estimate of KLOE ISR measurements

S. E. Müller
Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf

Radio MonteCarLOW Meeting Institut für Kernphysik Mainz, 11 April 2014

The KLOE data sets

- KLOE05: 60 points between 0.35 and $0.95 \mathrm{GeV}^{2}$, based on $141.4 \mathrm{pb}^{-1}$ of data taken in $2001^{\text {a }}$
- KLOE08: 60 points between 0.35 and $0.95 \mathrm{GeV}^{2}$, based on $240.0 \mathrm{pb}^{-1}$ data taken in 2002^{b}
- KLOE10: 75 points between 0.1 and $0.85 \mathrm{GeV}^{2}$, based on $232.6 \mathrm{pb}^{-1}$ data taken in 2006^{c} with $\sqrt{s}=1.00 \mathrm{GeV}$
- KLOE12: 60 points between 0.35 and $0.95 \mathrm{GeV}^{2}$, based on $240.0 \mathrm{pb}^{-1}$ data taken in $2002^{\text {d }}$, normalized to muons

[^0]
The KLOE data sets

- KLOE05: 60 points betwe by KLOEO8! $95 \mathrm{GeV}^{2}$, based on 141. Superseded by Laken in 2001a
- KLOE08: 60 points between 0.35 and $0.95 \mathrm{GeV}^{2}$, based on $240.0 \mathrm{pb}^{-1}$ data taken in 2002^{b}
- KLOE10: 75 points between 0.1 and $0.85 \mathrm{GeV}^{2}$, based on $232.6 \mathrm{pb}^{-1}$ data taken in 2006^{c} with $\sqrt{s}=1.00 \mathrm{GeV}$
- KLOE12: 60 points between 0.35 and $0.95 \mathrm{GeV}^{2}$, based on $240.0 \mathrm{pb}^{-1}$ data taken in $2002^{\text {d }}$, normalized to muons

[^1]
Recap from last meeting:

- A combined estimate for the data sets of the KLOE08, KLOE10 and KLOE12 analyses was presented
- $195 y_{i}=\left\{y_{1}, \ldots, y_{195}\right\}$ measurements for the 85 observables with true value $X_{\alpha}=\left\{X_{1}, \ldots, X_{85}\right\}$ (the 85 bins between 0.1 and 0.95 GeV^{2})
- Combined estimates \hat{x}_{α} were evaluated using the BLUE (Best Linear Unbiased Estimate) method ${ }^{1}$
- Need to construct two matrices $\mathscr{U}_{i \alpha}$ and $\mathscr{M}_{i j}$ to determine the \hat{x}_{α}

Recap from last meeting:

- A combined estimate for the data sets of the KLOE08, KLOE10 and KLOE12 analyses was presented
- $195 y_{i}=\left\{y_{1}, \ldots, y_{195}\right\}$ measurements for the 85 observables with true value $X_{\alpha}=\left\{X_{1}, \ldots, X_{85}\right\}$ (the 85 bins between 0.1 and 0.95 GeV^{2})
- Combined estimates \hat{x}_{α} were evaluated using the BLUE (Best Linear Unbiased Estimate) method ${ }^{1}$
- Need to construct two matrices $\mathscr{U}_{i \alpha}$ and $\mathscr{M}_{i j}$ to determine the \hat{x}_{α}

Recap from last meeting:

- A combined estimate for the data sets of the KLOE08, KLOE10 and KLOE12 analyses was presented
- $195 y_{i}=\left\{y_{1}, \ldots, y_{195}\right\}$ measurements for the 85 observables with true value $X_{\alpha}=\left\{X_{1}, \ldots, X_{85}\right\}$ (the 85 bins between 0.1 and 0.95 GeV^{2})
- Combined estimates \hat{x}_{α} were evaluated using the BLUE (Best Linear Unbiased Estimate) method ${ }^{1}$
- Need to construct two matrices $\mathscr{U}_{i \alpha}$ and $\mathscr{M}_{i j}$ to determine the \hat{x}_{α}
${ }^{1}$ A. Valassi, NIM A500 (2003) 391; L. Lyons and D. Gibaut, NIM A270 (1988) 1110

Recap from last meeting:

- A combined estimate for the data sets of the KLOE08, KLOE10 and KLOE12 analyses was presented
- $195 y_{i}=\left\{y_{1}, \ldots, y_{195}\right\}$ measurements for the 85 observables with true value $X_{\alpha}=\left\{X_{1}, \ldots, X_{85}\right\}$ (the 85 bins between 0.1 and 0.95 GeV^{2})
- Combined estimates \hat{x}_{α} were evaluated using the BLUE (Best Linear Unbiased Estimate) method ${ }^{1}$
- Need to construct two matrices $\mathscr{U}_{i \alpha}$ and $\mathscr{M}_{i j}$ to determine the \hat{x}_{α}

The $\mathscr{U}_{i \alpha}$ matrix

 is a $(\underbrace{195}_{\text {rows }} \times \underbrace{85}_{\text {cols }})$ matrix linking the measurements y_{i} to the observables $X_{\alpha}$$$
\mathscr{U}_{i \alpha}= \begin{cases}1 & \text { if } y_{i} \text { is a measurement of } X_{\alpha} \\ 0 & \text { if } y_{i} \text { is not a measurement of } X_{\alpha}\end{cases}
$$

The $\mathscr{U}_{i \alpha}$ matrix

$$
\mathscr{U}=\left(\begin{array}{cccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
& & & & & & & & & & & & & & & & \\
1 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

The $\mathscr{U}_{i \alpha}$ matrix

$$
\begin{aligned}
& \rightarrow \text { bins in } M_{\pi \pi}^{2}\left(0.1-0.95 \mathrm{GeV}^{2}\right)
\end{aligned}
$$

The $\mathscr{M}_{i j}$ matrix

is the covariance matrix for the $60+75+60=195$ data points.

The $\mathscr{M}_{i j}$ matrix
is the covariance matrix for the $60+75+60=195$ data points.

A caveat: normalization errors

G. D'Agostini (NIM A346 (1994) 306):

Normalization errors (e.g. errors on scale factors) can create a bias when fitting correlated data

The problem of finding the linear unbiased estimates of minimum variance for the 85 observables X_{α} is equivalent to the problem of finding the estimates \hat{x}_{α} minimizing the quantity

$$
\begin{equation*}
S=\sum_{i=1}^{195} \sum_{j=1}^{195}\left[y_{i}-(\mathscr{U} \hat{x})_{i}\right] \mathscr{M}_{i j}^{-1}\left[y_{j}-(\mathscr{U} \hat{x})_{j}\right] \tag{1}
\end{equation*}
$$

However, only the free parameters \hat{x}_{α} are varied (within the errors) to find the minimum of S. But in the case of a normalization error, also the elements of $\mathscr{M}_{i j}$ should be scaled accordingly when varying the \hat{x}_{α}. Therefore, normalization errors lead to a bias in this method.

A caveat: normalization errors

G. D'Agostini (NIM A346 (1994) 306):

Normalization errors (e.g. errors on scale factors) can create a bias when fitting correlated data

Way out: Two separate covariance matrices:

- $\mathscr{M}_{i j}^{\text {stat }}$ which contains the statistical uncertainties and is used to find the \hat{x}_{α}
- $\mathscr{M}_{i j}^{\text {syst }}$ which contains all the normalization errors, gives
$\operatorname{cov}^{\text {syst }}\left(\hat{x}_{\alpha}, \hat{x}_{\beta}\right)=\sum_{i=1}^{195} \sum_{j=1}^{195} \lambda_{\alpha i} \mathscr{M}_{i j}^{\text {syst }} \lambda_{\beta j}$, which can then be added to $\operatorname{cov}^{\text {stat }}\left(\hat{x}_{\alpha}, \hat{x}_{\beta}\right)$:

$$
\begin{equation*}
\operatorname{cov}^{\operatorname{tot}}\left(\hat{x}_{\alpha}, \hat{x}_{\beta}\right)=\operatorname{cov}^{\text {stat }}\left(\hat{x}_{\alpha}, \hat{x}_{\beta}\right)+\operatorname{cov}^{\text {syst }}\left(\hat{x}_{\alpha}, \hat{x}_{\beta}\right) \tag{1}
\end{equation*}
$$

The result: Cross section

The result: Cross section

The result: Fractional differences

The result: Fractional differences

The covariance matrices for the BLUE values

stat. covariance matrix:

syst. covariance matrix:

To obtain the total covariance matrix, simply add the two.

Results on $a_{\mu}^{\pi \pi}$:

Using a combination of KLOE08 \& KLOE10 (KLOE Note 225):

$$
\begin{align*}
\Delta a_{\mu}^{\pi \pi}\left[0.10-0.95 \mathrm{GeV}^{2}\right] & =(488.6 \pm 6.0) \times 10^{-10} \tag{2}\\
\Delta a_{\mu}^{\pi \pi}\left[0.35-0.85 \mathrm{GeV}^{2}\right] & =(379.1 \pm 2.9) \times 10^{-10} \tag{3}
\end{align*}
$$

Using the BLUE for KLOE08, KLOE10 \& KLOE12:

$$
\begin{align*}
\Delta a_{\mu}^{\pi \pi}\left[0.10-0.95 \mathrm{GeV}^{2}\right] & =(488.6 \pm 5.7) \times 10^{-10} \tag{4}\\
\Delta a_{\mu}^{\pi \pi}\left[0.35-0.85 \mathrm{GeV}^{2}\right] & =(378.9 \pm 2.8) \times 10^{-10} \tag{5}
\end{align*}
$$

Results on $a_{\mu}^{\pi \pi}$:

Using a combination of KLOE08 \& KLOE10 (KLOE Note 225):

$$
\begin{align*}
\Delta a_{\mu}^{\pi \pi}\left[0.10-0.95 \mathrm{GeV}^{2}\right] & =(488.6 \pm 6.0) \times 10^{-10} \tag{2}\\
\Delta a_{\mu}^{\pi \pi}\left[0.35-0.85 \mathrm{GeV}^{2}\right] & =(379.1 \pm 2.9) \times 10^{-10} \tag{3}
\end{align*}
$$

Using the BLUE for KLOE08, KLOE10 \& KLOE12:

$$
\begin{align*}
\Delta a_{\mu}^{\pi \pi}\left[0.10-0.95 \mathrm{GeV}^{2}\right] & =(488.6 \pm 5.7) \times 10^{-10} \tag{4}\\
\Delta a_{\mu}^{\pi \pi}\left[0.35-0.85 \mathrm{GeV}^{2}\right] & =(378.9 \pm 2.8) \times 10^{-10} \tag{5}
\end{align*}
$$

Using the BLUE for KLOE08, KLOE10 \& KLOE12, but correcting KLOE08 and KLOE10 for Fred Jegerlehner's 2012 corrections for vacuum polarization:

$$
\begin{align*}
& \Delta a_{\mu}^{\pi \pi}\left[0.10-0.95 \mathrm{GeV}^{2}\right]=(487.8 \pm 5.7) \times 10^{-10} \tag{6}\\
& \Delta a_{\mu}^{\pi \pi}\left[0.35-0.85 \mathrm{GeV}^{2}\right]=(378.1 \pm 2.8) \times 10^{-10} \tag{7}
\end{align*}
$$

χ^{2} determination

The BLUE method is equivalent to the problem of finding the estimates \hat{x}_{α} minimizing the sum ${ }^{2}$:

$$
\begin{align*}
S & =-2 \log \mathscr{L}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[y_{i}-(\mathscr{U} \hat{x})_{i}\right] \mathscr{M}_{i j}^{-1}\left[y_{j}-(\mathscr{U} \hat{x})_{j}\right] \tag{8}\\
& =\sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathscr{U}_{i \alpha}\left(y_{i}-\hat{x}_{\alpha}\right)\right] \mathscr{M}_{i j}^{-1}\left[\mathscr{U}_{j \beta}\left(y_{j}-\hat{x}_{\beta}\right)\right] \tag{9}
\end{align*}
$$

Assuming that errors are Gaussian, the minimum of S should be distributed as a χ^{2} with $(n-N)=195-85=110$ degrees of freedom.

χ^{2} determination

The BLUE method is equivalent to the problem of finding the estimates \hat{x}_{α} minimizing the sum ${ }^{2}$:

$$
\begin{align*}
S & =-2 \log \mathscr{L}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[y_{i}-(\mathscr{U} \hat{x})_{i}\right] \mathscr{M}_{i j}^{-1}\left[y_{j}-(\mathscr{U} \hat{x})_{j}\right] \tag{8}\\
& =\sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathscr{U}_{i \alpha}\left(y_{i}-\hat{x}_{\alpha}\right)\right] \mathscr{M}_{i j}^{-1}\left[\mathscr{U}_{j \beta}\left(y_{j}-\hat{x}_{\beta}\right)\right] \tag{9}
\end{align*}
$$

Assuming that errors are Gaussian, the minimum of S should be distributed as a χ^{2} with $(n-N)=195-85=110$ degrees of freedom.

I find $\chi_{\text {tot }}^{2} / \mathrm{ndf}=183 / 110$ with a χ^{2}-probability of $\operatorname{Prob} \simeq 1.5 \cdot 10^{-5}$

χ^{2} contributions

Keeping only the terms with $\alpha=\beta$ in Eq. 9, we can obtain the individual contributions S_{α} in each bin of $M_{\pi \pi}^{2}$:

$$
\begin{equation*}
S_{\alpha}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathscr{U}_{i \alpha}\left(y_{i}-\hat{x}_{\alpha}\right)\right] \mathscr{M}_{i j}^{-1}\left[\mathscr{U}_{j \alpha}\left(y_{j}-\hat{x}_{\alpha}\right)\right] \tag{10}
\end{equation*}
$$

χ^{2} contributions

Keeping only the terms with $\alpha=\beta$ in Eq. 9, we can obtain the individual contributions S_{α} in each bin of $M_{\pi \pi}^{2}$:

$$
\begin{equation*}
S_{\alpha}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mathscr{U}_{i \alpha}\left(y_{i}-\hat{x}_{\alpha}\right)\right] \mathscr{M}_{i j}^{-1}\left[\mathscr{U}_{j \alpha}\left(y_{j}-\hat{x}_{\alpha}\right)\right] \tag{10}
\end{equation*}
$$

The result: Fractional differences (again!)

The result: Fractional differences (again!)

KLOE results:

Comparison KLOE10 with KLOE08 and KLOE12:

Correlations between $\pi \pi \gamma$ and $\mu \mu \gamma$ systematic errors in KLOE12 analysis

Given two measured quantities X_{1} and X_{2} with a common normalization factor f with uncertainty σ_{f}. Then in the ratio $R=X_{1} / X_{2}$, the uncertainty σ_{f} vanishes.

Cf., if the $\pi \pi \gamma$ and $\mu \mu \gamma$ analyses have common normalization factors, the uncertainty induced by these factors would vanish in the ratio $\pi \pi \gamma / \mu \mu \gamma$

- Uncertainties for KLOE08 $\pi \pi \gamma$ analysis and KLOE12 $\pi \pi \gamma / \mu \mu \gamma$ analysis would be uncorrelated

Correlations between $\pi \pi \gamma$ and $\mu \mu \gamma$ systematic errors in

 KLOE12 analysisGiven two measured quantities X_{1} and X_{2} with a common normalization factor f with uncertainty σ_{f}. Then in the ratio $R=X_{1} / X_{2}$, the uncertainty σ_{f} vanishes.

Cf., if the $\pi \pi \gamma$ and $\mu \mu \gamma$ analyses have common normalization factors, the uncertainty induced by these factors would vanish in the ratio $\pi \pi \gamma / \mu \mu \gamma$

- Uncertainties for KLOE08 $\pi \pi \gamma$ analysis and KLOE12 $\pi \pi \gamma / \mu \mu \gamma$ analysis would be uncorrelated
If $\pi \pi \gamma$ and $\mu \mu \gamma$ analyses have no correlation due to common normalization factors, then
- Uncertainties for KLOE08 $\pi \pi \gamma$ analysis and KLOE12 $\pi \pi \gamma / \mu \mu \gamma$ analysis are fully correlated

Correlations between $\pi \pi \gamma$ and $\mu \mu \gamma$ systematic errors in

 KLOE12 analysisCurrently, http://www.lnf.infn.it/kloe/ppg/ppg_2012.html gives only information on systematic uncertainties on $\sigma_{\pi \pi}$ obtained from the ratio $\pi \pi \gamma / \mu \mu \gamma$ (with "some" correlation between the $\pi \pi \gamma$ and $\mu \mu \gamma$ analyses already taken into account?).

Not clear to me how to include these uncertainties properly in the systematic covariance matrix of the BLUE values (at the moment, I take them as fully correlated between KLOE08 and KLOE12 - which in principle they are not...)

- I need more information on how the systematic errors of the KLOE12 analysis were obtained (and maybe would be good to have the $\mu \mu \gamma$ uncertainties, too)

Summary and conclusion

- BLUE of KLOE08, KLOE10 and KLOE12 data have been evaluated
- $\chi_{\text {tot }}^{2} /$ ndf $=183 / 110$ with a χ^{2}-probability of Prob $\simeq 1.5 \cdot 10^{-5}$ was found for the BLUE evaluation
- More information needed to understand treatment of systematic uncertainties in KLOE12 analysis
- Still some work needed, then result will be put on the KLOE ppg-webpage:
http://www.lnf.infn.it/kloe/ppg/
- Fit of the pion form factor (?)

[^0]: ${ }^{a}$ Phys. Lett. B606 (2005) 12
 ${ }^{b}$ Phys. Lett. B670 (2009) 285
 ${ }^{\text {C }}$ Phys. Lett. B700 (2011) 102
 ${ }^{d}$ Phys. Lett. B720 (2013) 336

[^1]: ${ }^{a}$ Phys. Lett. B606 (2005) 12
 ${ }^{b}$ Phys. Lett. B670 (2009) 285
 ${ }^{\text {c }}$ Phys. Lett. B700 (2011) 102
 ${ }^{d}$ Phys. Lett. B720 (2013) 336

