
Higher order QCD corrections via local

subtraction
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QCD at the LHC

Complicated environment, QCD must be understood/modeled as best as
feasible

➠ parton model - beams of
partons

➠ radiation off incoming partons

➠ primary hard scattering
(µ ≃ Q ≫ ΛQCD)

➠ radiation off outgoing partons
(Q > µ > ΛQCD)

➠ hadronization and heavy
hadron decay (µ ≃ ΛQCD)

➠ multiple parton interactions,
underlying event
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The hard process in perturbation theory

The scale of the hard scattering is µ ≫ ΛQCD, so by asymptotic freedom, it can
be treated in perturbation theory, i.e., by expansion in powers of the strong
coupling, αS(µ).

Consider a generic cross section for producing m jets

σm = αp
S

(

σLO
m + α1

Sσ
NLO
m + α2

Sσ
NNLO
m + . . .

)

Representative Feynman-diagrams
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+






+ +






+ . . .

How many terms to compute?
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Why NNLO?

LO prediction: order of magnitude estimate, rough shapes of distributions

NLO is mandatory for meaningful normalization and shape predictions

NNLO may be relevant

➠ NLO corrections are large:
◮ Higgs production from gluon

fusion in hadron collisions

➠ for benchmark processes measured
with high experimental accuracy:

◮ αs measurements form e+e−

event shapes
◮ W , Z production
◮ heavy quark hadroproduction

➠ reliable error estimate is needed:

◮ processes relevant for PDF
determination

◮ important background processes

(Anastasiou, Dixon, Melnikov, Petriello,

Phys. Rev. D69 (2004) 094008.)

Gábor Somogyi | Higher order QCD corrections via local subtraction | page 4



NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)
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NNLO ingredients

A generic m-jet cross section at NNLO involves

➠ Tree-level squared matrix elements
◮ with m + 2 parton kinematics
◮ known from LO calculations
◮ ‘doubly-real’ contribution (RR)

➠ One-loop squared matrix elements
◮ with m + 1 parton kinematics
◮ usually known from NLO calculations
◮ ‘real-virtual’ contribution (RV)

➠ Two-loop squared matrix elements
◮ with m parton kinematics
◮ known for all massless 2 → 2 processes
◮ ‘doubly-virtual’ contribution (VV)

Assuming we know the relevant matrix elements, can we use those matrix
elements to compute cross sections?
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

Doubly-real

◮ dσRR
m+2Jm+2

◮ Tree MEs with
m + 2-parton
kinematics

◮ kin. singularities as
one or two partons
unresolved: up to
O(ǫ−4) poles from
PS integration

◮ no explicit ǫ poles

Real-virtual

◮ dσRV

m+1Jm+1

◮ One-loop MEs with
m + 1-parton
kinematics

◮ kin. singularities as
one parton
unresolved: up to
O(ǫ−2) poles from
PS integration

◮ explicit ǫ poles up
to O(ǫ−2)

Doubly-virtual

◮ dσVV
m Jm

◮ One- and two-loop
MEs with m-parton
kinematics

◮ kin. singularities
screened by jet
function: PS
integration finite

◮ explicit ǫ poles up
to O(ǫ−4)
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The problem - IR singularities

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m

dσVV
m Jm .

THE KLN THEOREM

Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe)
observables.

HOWEVER

How to make this cancellation explicit, so that the various contributions can be
computed numerically? Need a method to deal with implicit poles.
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Approaches

Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello; Czakon)

➠ extract ǫ poles of each contribution (RR, RV, VV) separately by expanding
the integrand in distributions

➠ resulting expansion coefficients are finite multi-dimensional integrals,
integrate numerically

➠ cancellation of poles numerical, depends on observable

➠ first method to yield physical results, but can it handle complicated final
states?

Subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian; Gehrmann, Gehrmann-De
Ridder, Glover; Weinzierl; Del Duca, Trócsányi, GS)

➠ rearrange the poles between real and virtual contributions by subtracting
and adding back suitable approximate cross sections

➠ cancellation of explicit ǫ poles achieved analytically, remaining PS integrals
are finite

➠ nice properties (generality, efficiency) expected form experience at NLO

➠ definition of subtraction terms is not unique, hence several approaches:
q⊥, antenna, local
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Approaches

Sector decomposition

(Binoth, Heinrich, Anastasiou,
Dixon, Melnikov, Petriello,
Czakon)

✔ first method to yield
physical cross
sections

✔ cancellation of
divergences fully
numerical

✘ cancellation of poles
also, and depends on
jet function

✘ can it handle
complicated final
states?

q⊥ subtraction

(Catani, Grazzini, Cieri, Ferrera,
de Florian, Tramontano)

✔ exploits universal
behavior of q⊥
distribution at small
q⊥

✔ efficient and fully
exclusive calculation

✘ limited scope:
applicable only to
production of
massive colorless
final states in hadron
collisions

Antenna subtraction

(Gehrmann, Gehrmann-De Ridder,
Glover, Heinrich, Weinzierl)

✔ successfully applied
to e+e− → 2, 3j

✔ analytic integration
of antennae over
unresolved phase
space is understood

✘ counterterms are
nonlocal

✘ treatment of color is
implicit

✘ cannot cut factorized
phase space
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Approaches - developments

Refinement of the sector decomposition algorithm
(Anastasiou, Lazopoulos, Herzog 2010)

➠ uses non-linear mappings to disentangle overlapping singularities

➠ the aim is to increase efficiency by reducing the large number of
sectors/terms generated during decomposition

➠ first application: fully exclusive H → bb̄ decay at NNLO
(Anastasiou, Lazopoulos, Herzog 2011)

Refinement of phase space integration via sector decomposition
(Czakon 2010; Boughezal, Melnikov, Petriello 2011)

➠ FKS-like approach to double real radiation in tt̄ production

➠ sector decomposition used to make singular contributions explicit, guided
by known universal IR structure

➠ first NNLO computation of pp → tt̄ total cross section
(Baernreuther, Czakon, Mitov 2012)
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Why a new scheme?

Goal: devise a subtraction scheme with

➠ general and explicit expressions, including color
(view towards automation, color space notation is used)

➠ fully local counterterms, taking account of all color and spin correlations
(mathematical rigor, efficiency)

➠ option to constrain subtractions to near singular regions
(efficiency, important check)

➠ very algorithmic construction
(valid at any order in perturbation theory)
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Basics of subtraction

Strategy: rearrange IR singularities between various contributions by
subtracting and adding back suitably defined approximate cross sections.

➠ subtraction terms match the singularity structure of real emission point
wise (in d dimensions) ⇒ phase space integrals over real radiation
rendered convergent

➠ integrated forms of subtraction terms have the same pole structure as
virtual contribution ⇒ explicit ǫ-poles cancel point by point

The construction of a general (i.e. process- and observable-independent)
subtraction algorithm

➠ made possible by the universal structure of IR singularities, embodied in
so-called IR factorization formulae

➠ is not unique, hence several approaches (FKS, dipole, antenna,. . . )
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Subtraction - a caricature

Want to evaluate (at ǫ → 0)

σ =

∫ 1

0
dσR(x) + σV where

dσR(x) = x−1−ǫR(x)

R(0) = R0 < ∞

σV = R0/ǫ+ V

➠ define the counterterm

dσR,A (x) = x−1−ǫR0

➠ use it to reshuffle singularities between R and V contributions

σ =

∫ 1

0

[

dσR(x) − dσR,A (x)
]

ǫ=0
+

[

σV +

∫ 1

0
dσR,A (x)

]

ǫ=0

=

∫ 1

0

[
R(x) − R0

x1+ǫ

]

ǫ=0

+

[
R0

ǫ
+ V −

R0

ǫ

]

ǫ=0

=

∫ 1

0

R(x)− R0

x
+ V

The last integral is finite, computable with standard numerical methods.
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1
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Structure of the NNLO correction

Rewrite the NNLO correction as a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm

1. dσ
RR,A2
m+2 regularizes the doubly-unresolved limits of dσRR

m+2

2. dσ
RR,A1
m+2 regularizes the singly-unresolved limits of dσRR

m+2

3. dσ
RR,A12
m+2 accounts for the overlap of dσ

RR,A1
m+2 and dσ

RR,A2
m+2

4. dσ
RV,A1
m+1 regularizes the singly-unresolved limits of dσRV

m+1

5. (
∫

1
dσ

RR,A1
m+2 )

A1 regularizes the singly-unresolved limit of
∫

1
dσ

RR,A1
m+2
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Defining a subtraction scheme

Two issues must be addressed

1. What to subtract?

2. How to add it back?
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Defining a subtraction scheme

Two issues must be addressed

1. What to subtract?

2. How to add it back?

Strategy: IR limits are process independent and known

1. Start by defining subtraction terms based on IR limit formulae ⇒ the
result is trivially general and explicit ✔

2. Worry about integrating them later, since this is in principle a very
narrowly defined problem, given 1., but in practice turns out to be very
cumbersome ✘

Gábor Somogyi | Higher order QCD corrections via local subtraction | page 13



IR factorization formulae

The structure of IR singularities is universal, i.e., does not depend on the
process. The general structure of these formulae is the same in all limits

|M
(0)
n+p({p}n+p)|

2 R
−→

(
8παsµ

2ǫ
)p

SingR ({p}p) ⊗ |M
(0)
n ({p}n)|

2

R
−→ ⊗
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IR factorization formulae

Collinear and soft currents at NNLO are known

➠ Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

➠ One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca,
Kilgore, Schmidt 1998-9; Kosower, Uwer 1999; Catani,

Grazzini 2000; Kosower 2003)
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IR factorization formulae

Collinear and soft currents at NNLO are known

➠ Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

➠ One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca,
Kilgore, Schmidt 1998-9; Kosower, Uwer 1999; Catani,

Grazzini 2000; Kosower 2003)

Are these useful for NNLO?
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IR factorization formulae

Limit formulae cannot be used as subtraction terms as they stand. Consider

➠ collinear: pi ||pr

|M
(0)
n+1(pi , pr , . . .)|

2 i||r
−→ 8παsµ

2ǫ 1

sir
P̂

(0)
fi fr

(zi , zr , k⊥; ǫ)⊗ |M
(0)
n (pi + pr , . . .)|

2

➠ soft: pr → 0

|M
(0)
n+1(pr , . . .)|

2 r→0
−→ −8παsµ

2ǫ
∑

i,k

sik

sir skr
|M

(0)
n,(i,k)

(✚❩pr , . . .)|
2

Issues

➠ the singular function associated to a specific limit, SingR({p}p) may be
singular in other IR limits as well

➠ both SingR({p}p) and |M
(0)
n ({p}n)|

2 are only well-defined in the strict R
limit
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Defining a subtraction scheme

The following three problems must be addressed

1. Matching of limits to avoid multiple subtraction in overlapping singular
regions of PS. Easy at NLO: collinear limit + soft limit - collinear limit of
soft limit.

A1|M
(0)
m+1|

2 =
∑

i

[
∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]

|M
(0)
m+1|

2

2. Extension of IR factorization formulae over full PS using momentum
mappings that respect factorization and delicate structure of cancellations
in all limits.

{p}m+1
r

−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m ;Q)[dp1,m]

{p}m+2
r,s
−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m ;Q)[dp2,m]

3. Integration of the counterterms over the phase space of the unresolved
parton(s).
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Defining a subtraction scheme

Specific issues at NNLO

1. Matching is cumbersome if done in a brute force way. However, an
efficient solution that works at any order in PT is known.

2. Extension is delicate. E.g., counterterms for singly-unresolved real
emission (unintegrated and integrated) must have universal IR limits. This
is not guaranteed by QCD factorization.

3. Choosing the counterterms such that integration is (relatively)
straightforward generally conflicts with the delicate cancellation of IR
singularities.
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NNLO subtraction terms - general features

Based on universal IR limit formulae

➠ Altarelli-Parisi splitting functions, soft currents (tree and one-loop, triple
AP functions)

➠ simple and general procedure for matching of limits using physical gauge

➠ extension based on momentum mappings that can be generalized to any
number of unresolved partons

Fully local in color ⊗ spin space

➠ no need to consider the color decomposition of real emission ME’s

➠ azimuthal correlations correctly taken into account in gluon splitting

➠ can check explicitly that the ratio of the sum of counterterms to the real
emission cross section tends to unity in any IR limit

Straightforward to constrain subtractions to near singular regions

➠ gain in efficiency

➠ independence of physical results on phase space cut is strong check

Given completely explicitly for any process with non colored initial state
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NNLO subtraction terms

Can check the ratio of the real emission matrix element and the sum of all
subtractions for all IR limits

1

2

5

10

2

5

10
2

2

5

10
3

2

5

10
4

#
ev

en
ts

0.99 0.995 1.0 1.005 1.01

R

Singe collinear limit

y45 = 10
-6

y45 = 10
-8

y45 = 10
-10

e
+
e
−
→ qq̄ggg

1

2

5

10

2

5

10
2

2

5

10
3

2

5

10
4

#
ev

en
ts

0.99 0.995 1.0 1.005 1.01

R

Double soft limit

y4Q y5Q = 10
-4

y4Q y5Q = 10
-6

y4Q y5Q = 10
-8

e
+
e
−
→ qq̄ggg
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Integrating the subtractions
Momentum mappings used to define the counterterms

{p}n+p
R

−→ {p̃}n ⇒ dφn+p({p};Q) = dφn({p̃}
(R)
n ;Q)[dp

(R)
p,n ]

➠ implement exact momentum conservation, recoil distributed
democratically (can be generalized to any p)

➠ different collinear and soft mappings (R labels precise limit)

➠ exact factorization of phase space

Counterterms are products (in color and spin space) of

➠ factorized ME’s independent of variables in [dp
(R)
p,n ]

➠ singular factors (AP functions, soft currents), to be integrated over [dp
(R)
p,n ]

XR ({p}n+p) =
(
8παsµ

2ǫ
)p

SingR (p
(R)
p )⊗ |M

(0)
n ({p̃}

(R)
n )|2

Can compute once and for all the integral over unresolved partons

∫

p

XR ({p}n+p) =
(
8παsµ

2ǫ
)p

[ ∫

p

SingR (p
(R)
p )

]

⊗ |M
(0)
n ({p̃}

(R)
n )|2
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Solving the integrlas

Master integrals

➠ use algebraic and symmetry relations to reduce to a basic set of integrals

➠ note: this is not the usual notion of MIs (no IBPs used)

Strategy for computing the master integrals

1. write phase space in terms of
angles and energies

2. angular integrals in terms of
Mellin-Barnes representations

3. resolve the ǫ poles by analytic
continuation

4. MB integrals to Euler-type
integrals, pole coefficients are
finite parametric integrals

1. choose explicit parametrization
of phase space

2. write the parametric integral
representation in chosen
variables

3. resolve the ǫ poles by sector
decomposition

4. pole coefficients are finite
parametric integrals

5. evaluate the parametric integrals in terms of multiple polylogs

6. simplify result (optional)
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List of master integrals

Int status

I
(k)
1C ,0

✔

I
(k)
1C ,1

✔

I
(k)
1C ,2

✔

I
(k)
1C ,3

✔

I
(k)
1C ,4

✔

I
(k,l)
1C ,5

✔

I
(k,l)
1C ,6

✔

I
(k)
1C ,7

✔

I1C ,8 ✔

Int status

I
(k)
12S ,1

✔

I
(k)
12S ,2

✔

I
(k)
12S ,3

✔

I
(k)
12S ,4

✔

I
(k)
12S ,5

✔

I12S ,6 ✔

I12S ,7 ✔

I12S ,8 ✔

I12S ,9 ✔

I12S ,10 ✘

I12S ,11 ✘

I12S ,12 ✔

I12S ,13 ✔

Int status

I1S ,0 ✔

I1S ,1 ✔

I1S ,2 ✘

I
(k)
1S ,3

✔

I1S ,4 ✔

I1S ,5 ✔

I1S ,6 ✔

I1S ,7 ✔

Int status

I
(k)
12CS ,1

✔

I12CS ,2 ✔

I12CS ,3 ✔

Int status

I1CS ,0 ✔

I1CS ,1 ✔

I
(k)
1CS ,2

✔

I1CS ,3 ✔

I1CS ,4 ✔

Int status

I
(j,k,l,m)
2C ,1

✔

I
(j,k,l,m)
2C ,2

✔

I
(j,k,l,m)
2C ,3

✔

I
(j,k,l,m)
2C ,4

✘

I
(j,k,l,m)
2C ,5

✘

I
(k,l)
2C ,6

✔

Int status

I
(k,l)
12C ,1

✔

I
(k,l)
12C ,2

✔

I
(k)
12C ,3

✔

I
(k,l)
12C ,4

✔

I
(k)
12C ,5

✘

I
(k)
12C ,6

✔

I
(k)
12C ,7

✔

I
(k)
12C ,8

✔

I
(k)
12C ,9

✔

I
(k)
12C ,10

✔

Int status

I
(k)
2CS ,1

✘

I
(k)
2CS ,2

✘

I
(k)
2CS ,3

✔

I
(k)
2CS ,4

✔

I
(k)
2CS ,5

✔

Int status

I2S ,1 ✔

I2S ,2 ✔

I2S ,3 ✔

I2S ,4 ✔

I2S ,5 ✔

I2S ,6 ✔

I2S ,7 ✔

I2S ,8 ✔

I2S ,9 ✔

I2S ,10 ✔

I2S ,11 ✔

I2S ,12 ✔

I2S ,13 ✔

I2S ,14 ✔

I2S ,15 ✔

I2S ,16 ✔

I2S ,17 ✔

I2S ,18 ✔

I2S ,19 ✘

I2S ,20 ✔

I2S ,21 ✔

I2S ,22 ✔

I2S ,23 ✔
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Phase space integrals - an example

Abelian double soft counterterm: among many others, in dσ
RR,A2
m+2 we find

(

S
(0,0)
rs

)ab

= (8παsµ
2ǫ)2

∑

i,k,j,l

1

4

sik

sir skr

sjl

sjssls
|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− yrQ − ysQ + yrs)
d′0−m(1−ǫ)Θ(y0 − yrQ − ysQ + yrs)

The set of m momenta, {p̃}, is obtained by a momentum mapping which leads
to an exact factorization of phase space

{p}m+2
Srs
−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp

(rs)
2,m]

b
b

b
b

1

r

s

m + 2

−→

b
b

b
b

1̃

m̃ + 2

⊗

r

s

K
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Phase space integrals - an example

Abelian double soft counterterm: among many others, in dσ
RR,A2
m+2 we find

(

S
(0,0)
rs

)ab

= (8παsµ
2ǫ)2

∑

i,k,j,l

1

4

sik

sir skr

sjl

sjssls
|M

(0)
m,(i,k)(j,l)

({p̃})|2

× (1− yrQ − ysQ + yrs)
d′0−m(1−ǫ)Θ(y0 − yrQ − ysQ + yrs)

The set of m momenta, {p̃}, is obtained by a momentum mapping which leads
to an exact factorization of phase space

{p}m+2
Srs
−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp

(rs)
2,m]

Then we must compute
∫

[dp
(rs)
2,m]

(

S (0,0)
rs

)ab

≡

[

αs

2π
Sǫ

(

µ2

Q2

)ǫ ]2
∑

i,k,j,l

[S(0)
rs ](i,k),(j,l)|M

(0)

m,(i,k)(j,l)
({p̃})|2

where [S
(0)
rs ](i,k),(j,l) ≡ [S

(0)
rs ](i,k),(j,l)(pi , pk , pj , pl , ǫ, y0, d

′
0) is a kinematics

dependent function.
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Abelian double soft integral

For simplicity, consider the terms in the sum where j = i and l = k :
[S

(0)
rs ](i,k),(i,k). Kinematical dependence is through cosχik = ∡(pi , pk), we set

cosχik = 1− 2Yik,Q , i.e., Yik,Q is between zero and one.

Using angles and energies in the Q rest frame with some specific orientation to
parametrize the factorized phase space measure, [dp

(rs)
2,m], we find that

[S
(0)
rs ](i,k),(i,k) is proportional to

I2S ,2(Yik,Q ; ǫ, y0, d
′
0) = −

4Γ4(1− ǫ)

πΓ2(1− ǫ)

By0(−2ǫ, d ′
0)

ǫ
Yik,Q

∫ y0

0
dy y−1−2ǫ(1 − y)d

′
0−1+ǫ

×

∫ 1

−1
d(cos ϑ) (sin ϑ)−2ǫ

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

[
f (ϑ, ϕ; 0)

]−1[
f (ϑ, ϕ;Yik,Q)

]−1

×
[
Y (y , ϑ, ϕ;Yik,Q)

]−ǫ

2F1

(
− ǫ,−ǫ, 1− ǫ, 1− Y (y , ϑ, ϕ;Yik,Q)

)

where

f (ϑ, ϕ;Yik,Q) = 1− 2
√

Yik,Q(1 − Yik,Q) sinϑ cosϕ− (1 − 2Yik,Q)χ cos ϑ

Y (y , ϑ, ϕ;χ) =
4(1 − y)Yik,Q

[2(1 − y) + y f (ϑ, ϕ; 0)][2(1− y) + y f (ϑ, ϕ;Yik,Q)]
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Abelian double soft integral

This integral is equal to (y0 = 1, d ′
0 = 3− 3ǫ)

I2S ,2(Y ; ǫ, 1, 3− 3ǫ) =

=
1

2ǫ4
−

1

ǫ3

[

ln(Y ) − 3

]

+
1

ǫ2

[

2Li2(1− Y ) + ln2(Y )− π2 −

(
2

1− Y

−
1

2(1− Y )2
+

9

2

)

ln(Y ) +
1

2(1− Y )
+ 16

]

+
1

ǫ

[
5

3

(
18Li3(1 − Y )

5
+

6Li3(Y )

5

−
6Li2(1− Y ) ln(Y )

5
−

2

5
ln3(Y ) +

3

5
ln(1− Y ) ln2(Y ) + π2 ln(Y )−

78ζ(3)

5

)

+

(
3

1− Y
−

3

4(1 − Y )2
+

15

4

)(

2Li2(1− Y ) + ln2(Y )
)

− 6π2 −

(
27

2(1 − Y )

−
13

4(1− Y )2
+

91

4

)

ln(Y ) +
19

4(1 − Y )
+

163

2

]

+O(ǫ0)

Note the Y → 1 limit is finite

lim
Y→1

I2S ,2(Y ; ǫ, 1, 3−3ǫ) =
1

2ǫ4
+

3

ǫ3
+

1

ǫ2

(
71

4
−π2

)

+
1

ǫ

(
393

4
−6π2−24ζ(3)

)

+O(ǫ0)
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Abelian double soft integral

Finite term is computed numerically (y0 = 1, d ′
0 = 3− 3ǫ)

0

10

20

30

40

50

60

70

80

I 2
S,

2(
Y

)
/1

03

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

Y

Finite part
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Analytic vs. numeric

As a matter of principle

➠ A rigorous proof of cancellation of IR poles requires the poles of integrated
counterterms in analytic form.

However

➠ An actual implementation needs numbers for the finite parts of the
integrated counterterms.

➠ These finite parts are smooth functions of kinematic variables.

Hence

➠ Numerical forms of the finite parts are sufficient for practical purposes.
The final results can be conveniently given by interpolating tables or
approximating functions computed once and for all.

➠ In particular, suitable approximating functions may be obtained by fitting.
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k , l)

I2C ,6(xir , xjs ; ǫ, α0, d0; k, l) = xirxjs

∫ 1

0
dαdβ

∫ 1

0
dv du α−1−ǫβ−1−ǫ(1 − α− β)2d0−2(1−ǫ)

× [α+ (1− α− β)xir ]
−1−ǫ[β + (1 − α− β)xjs ]

−1−ǫv−ǫ(1 − v)−ǫu−ǫ(1 − u)−ǫ

×

(
α+ (1 − α− β)xirv

2α+ (1− α− β)xir

)k (β + (1− α− β)xjsu

2β + (1− α− β)xjs

)l

Θ(α0 − α− β)
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k , l)

➠ poles (up to O(ǫ−4)) extracted via sector decomposition

➠ numerical values of pole coefficients computed for a 17× 17 grid with
precision of ∼ 10−7

➠ define three regions (note: result is symmetric in xir , xjs)
◮ asymptotic: xir , xjs < 10−4

◮ non-asymptotic: xir , xjs > 10−2

◮ border: xir < 10−2 or xjs < 10−2

➠ in each region, fit with ansatz

F(xir , xjs) =
∑

pi ,li

Cm;p1,p2;l1,l2(x
p1
ir x

p2
js )(log

l1(xir ) log
l2(xjs))

where p1 + p2 ≤ m with m a free parameter, while l1 + l2 ≤ n and n is
predicted
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Example of approximation by fitting

Doubly-unresolved double-collinear master integral I2C ,6(xir , xjs ; ǫ, 1, 3− 3ǫ, k , l)
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Methods of integration - angular integrals

Consider the d dimensional angular integral with n denominators (GS 2011)

Ωj1,...,jn =

∫

dΩd−1(q)
1

(p1 · q)j1 · · · (pn · q)jn

This admits the following Mellin-Barnes representation (j = j1 + . . .+ jn)

Ωj1,...,jn ({vkl}; ǫ) = 22−j−2ǫπ1−ǫ
1

∏n
k=1 Γ(jk )Γ(2 − j − 2ǫ)

×

∫ +i∞

−i∞

[
n∏

k=1

n∏

l=k

dzkl

2πi
Γ(−zkl ) (vkl )

zkl

][
n∏

k=1

Γ(jk + zk)

]

Γ(1− j − ǫ− z) .

where vkl =
pk · pl

2
for k 6= l and vkk =

p2
k

4
while

z =
n∑

k=1

n∑

l=k

zkl and zk =
k∑

l=1

zlk +
n∑

l=k

zkl .
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Methods of integration - MB to parametric integrals

Basic idea is to express products of gamma functions as real integrals

I =

∫ +i∞

−i∞

dz1

2πi

dz2

2πi
· · · Γ[a + z1 + z2]Γ[b − z1 − z2] · · · v

z1
1 v

z2
2

=

∫ +i∞

−i∞

dz1

2πi

dz2

2πi
· · · Γ[a + b]

∫ 1

0

dt t
a−1+z1+z2 (1− t)b−1−z1−z2 · · · v z1

1 v
z2
2

if ℜ(a + z1 + z2) > 0 and ℜ(b − z1 − z2) > 0 so the t integral converges

Eliminate enough gamma functions to be able to perform the MB integrals

➠ can eliminate all gamma functions for real integrals, then use

∫ +i∞

−i∞

dz

2πi
v
z = δ(1− v) , v > 0

➠ For multidimensional MB integrals, sometimes it is more useful to
eliminate just the gamma functions that couple the MB integrations. This
turns the multidimensional MB integral into products of 1d MB integrals.

After solving the remaining MB integrals, we get the desired parametric
representation.
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Methods of integration - symbolic integration
Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t1 integration

➠ assuming the denominator is a product of factors all linear in t1, after
partial fractioning, we will need to compute

∫ 1

0

dt1

tn1
,

∫ 1

0

dt1

[t1 − a(x , t2, . . .)]n
,

➠ n = 1 is non-trivial
∫

dt1

t1
= ln t1 ,

∫
dt1

t1 − a(x , t2, . . .)
= ln[t1 − a(x , t2, . . .)]

➠ e.g., we have

∫ 1

0

dt1

t1 − a(x , t2, . . .)
= ln

[

1−
1

a(x , t2, . . .)

]

➠ this is elementary, although there is some fine print for definite integrals
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Methods of integration - symbolic integration
Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t2 integration

➠ assuming the new denominator is a product of factors all linear in t2, after
partial fractioning — aside from the integrals we already encountered —
we will have to compute

∫ 1

0

dt2

tn2
ln

[

1−
1

a(x , t2, . . .)

]

,

∫ 1

0

dt2

[t2 − b(x , t3, . . .)]n
ln

[

1−
1

a(x , t2, . . .)

]

,

➠ if a(x , t2, . . .) is also linear in t2, we can use the functional identities for
the logarithm [ln(ab) = ln a+ ln b, ln(1/a) = − ln a] to write

ln

[

1−
1

a(x , t2, . . .)

]

= ln[a1(x , t3, . . .)− t2]− ln[a2(x , t3, . . .)− t2]

➠ again, n = 1 is non-trivial
∫

dt2

t2
ln t2 =

1

2
ln2(t2) ,

∫
dt2

t2
ln(1− t2) = −Li2(t2)
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Methods of integration - symbolic integration
Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t2 integration (cont.)

➠ e.g., we have

∫ 1

0

dt2

t2 − b(x , t3, . . .)
ln(t2) = Li2

[
1

b(x , t3, . . .)

]

Gábor Somogyi | Higher order QCD corrections via local subtraction | page 28



Methods of integration - symbolic integration
Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

Before going to the t3 integration, notice

1. at each step, we needed to introduce a new transcendental function, ln, Li2

2. we needed to know the functional identities for ln to proceed
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Methods of integration - symbolic integration
Assume P and Q are polynomials and the following integral converges

I (x) =

∫ 1

0
dt1 dt2 dt3 . . .

P(x , t1, t2, t3, . . .)

Q(x , t1, t2, t3, . . .)

The t3 integration

➠ assuming the new denominator is a product of factors all linear in t3, after
partial fractioning — aside from the integrals we already encountered —
we will have to compute

∫ 1

0

dt3

tn3
Li2

[
p(x , t3, . . .)

q(x , t3, . . .)

]

,

∫ 1

0

dt3

[t3 − c(x , t4, . . .)]n
Li2

[
p(x , t3, . . .)

q(x , t3, . . .)

]

,

➠ will need to introduce new transcendental functions ⇒ multiple polylogs

➠ will need to use the functional identities for Li2 to reduce to some standard form

⇒ symbols, coporoducts, Hopf algebra of multiple polylogs
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Multiple polylogarithms

The appropriate generalization of log and classical polylogs (Goncharov 1998, 2001)

G(a1, . . . , an; z) =

∫ z

0

dt

t − a1
G(a2, . . . , an; t) with G(z) = 1

G(0, . . . , 0
︸ ︷︷ ︸

n

; z) =
1

n!
lnn(z)

Logarithms and classical polylogs are special cases, e.g.,

G(a, . . . , a
︸ ︷︷ ︸

n

; z) =
1

n!
lnn

(

1−
z

a

)

, G(0, . . . , 0
︸ ︷︷ ︸

n−1

, a; z) = −Lin

(
z

a

)

Functional relations among G s

➠ Problem: after the (n − 1)-st step of integration, the n-th variable can
appear in the ai

∫
dtn

tn − b
G(a1(tn, . . .), . . . , an−1(tn , . . .); z(tn, . . .))

Must reduce to ‘canonical’ form, where tn is only in the last entry.

➠ Unfortunately the functional equations among G s that would be needed to
do this are often unknown and need to be derived.
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Symbols, coproducts
Symbols are a tool for obtaining functional equations among G s

(Goncharov 2009; Goncharov, Spradlin, Vergu,
Volovich 2010; Duhr, Gangl, Rhodes 2011)

➠ The symbol is a way of associating to a multiple polylog a tensor in a
certain tensor space.

S(G(an−1, . . . , a1; an)) =

n−1∑

i=1

S(G(an−1, . . . , ai−1, ai+1, . . . , a1; an))⊗

(
ai − ai+1

ai − ai−1

)

e.g.,

S

(
1

n!
lnn(z)

)

= z ⊗ . . .⊗ z
︸ ︷︷ ︸

n times

, S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z
︸ ︷︷ ︸

(n−1) times

➠ Functional equations between multiple polylogs become algebraic
equations between tensors.

The idea of symbols can be refined based on the Hofp algebra structure of
multiple polylogs ⇒ coproduct (Duhr 2012)

➠ With these refinements one can build algorithms to reduce multiple
polylogs to ‘canonical’ form.
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Integrated approximate cross sections
Recall the NNLO correction is a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO

m+2 + σNNLO
m+1 + σNNLO

m

each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1
dσ

RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+

∫

1

[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]}

Jm
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Integrated approximate cross sections
Recall the NNLO correction is a sum of three terms

σNNLO = σRR
m+2 + σRV

m+1 + σVV
m = σNNLO
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m+1 + σNNLO

m

each integrable in four dimensions
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m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ
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m+2 Jm −

[
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m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1 dσ
RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2

[

dσ
RR,A2
m+2 − dσ

RR,A12
m+2

]

+
∫

1

[

dσ
RV,A1
m+1 +

( ∫

1 dσ
RR,A1
m+2

)
A1

]}

Jm

Integrated approximate cross sections

➠ After summing over unobserved flavors, all integrated approximate cross
sections can be written as products (in color space) of various insertion
operators with lower point cross sections.

➠ Can be computed once and for all (though admittedly lots of tedious
work).
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Integrated approximate cross sections - an example

Doubly unresolved

∫

2
dσ

RR,A2
m+2 = dσB

m ⊗ I
(0)
2 ({p}m ; ǫ)

➠ structure of insertion operator in color ⊗ flavor space

I
(0)
2 ({p}m ; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{∑

i

[

C
(0)
2,fi

T 2
i +

∑

k

C
(0)
2,fi fk

T 2
k

]

T 2
i

+
∑

j,l

[

S
(0),(j,l)
2 CA +

∑

i

CS
(0),(j,l)
2,fi

T 2
i

]

T jT l

+
∑

i,k,j,l

S
(0),(i,k)(j,l)
2 {T iT k ,T jT l}

}

➠ C
(0)
2,fi

, C
(0)
2,fi fk

, S
(0),(j,l)
2 , CS

(0),(j,l)
2,fi

and S
(0),(i,k)(j,l)
2 are kinematical functions

with poles up to O(ǫ−4)

➠ kinematical dependence through

xi = yiQ ≡
2pi · Q

Q2
and Yik,Q =

yik

yiQykQ
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Integrated approximate cross sections - an example

Doubly unresolved

∫

2
dσ

RR,A2
m+2 = dσB

m ⊗ I
(0)
2 ({p}m ; ǫ)

➠ e.g., e+e− → 3 jets (momentum assignment is 1q, 2q̄, 3g )

I
(0)
2 (p1, p2, p3; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{8C2
F
+ 10CACF + 3C2

A

4ǫ4
+

[

6C2
F
+

109CACF

12

+
77C2

A

24
−

7CFTRnf

3
−

CATRnf

2
−

(

4C2
F
+ CACF −

3C2
A

2

)

ln y12

−

(

2CACF +
3C2

A

2

)

(ln y13 + ln y23)

]
1

ǫ3
+O(ǫ−2)

}

➠ notice x and Y dependence combine to produce just yik dependence, as
expected
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➠ notice x and Y dependence combine to produce just yik dependence, as
expected
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Insertion operators

Color and flavor structure of all insertion operators known

Analytic computation of poles almost complete

➠ all MIs known analytically up to and including O(ǫ−2)

➠ 1/ǫ parts of ∼ 10 of O(300) integrals to be finished

Finite parts computed numerically

➠ final results in the form of approximating functions obtained by fitting
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Present status

NNLO correction is the sum of three terms

σNNLO = σRR

m+2 + σRV

m+1 + σVV

m = σNNLO

m+2 + σNNLO

m+1 + σNNLO

m

Each integrable in four dimensions

σNNLO
m+2 =

∫

m+2

{

dσRR
m+2Jm+2 − dσ

RR,A2
m+2 Jm −

[

dσ
RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

σNNLO
m+1 =

∫

m+1

{[

dσRV
m+1 +

∫

1 dσ
RR,A1
m+2

]

Jm+1 −
[

dσ
RV,A1
m+1 +

( ∫

1 dσ
RR,A1
m+2

)
A1

]

Jm

}

σNNLO
m =

∫

m

{

dσVV
m +

∫

2
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]

+
∫

1

[

dσ
RV,A1
m+1 +

( ∫

1 dσ
RR,A1
m+2

)
A1

]}

Jm

✔ unintegrated doubly real counterterms (for final state singularities)

✔ unintegrated real virtual counterterms (for final state singularities)

✔ tree-level and one-loop singly unresolved integrals [to O(ǫ−1)]

➠ tree-level iterated singly unresolved integrals [O(ǫ−1) in progress]

➠ tree-level doubly unresolved integrals [O(ǫ−1) in progress]
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Extension to hadronic initial states

Essential elements of the construction unchanged

➠ write the IR factorization formulae for all limits — including initial state
splittings — in such a form that their overlap structure can be disentangled

➠ extend the formulae relevant for initial state singularities over full phase
space — requires new momentum mappings

➠ subtraction terms for final state splittings fine as they stand

➠ integrate new subtraction terms analytically and numerically

Basic steps clear, but admittedly lots of tedious work
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Conclusions

NNLO is the new precision frontier

Two bottlenecks

1. can we compute the relevant (2-loop) amplitudes?

2. if yes, can we use those to compute cross sections?

Subtraction is the traditional solution to 2. We have set up

➠ general, explicit, local subtraction scheme for computing NNLO
corrections in QCD

➠ construction of subtraction terms based on IR limit formulae

➠ analytic integration of subtraction terms is feasible with modern
integration techniques and is almost finished

➠ the scheme is worked out in full detail for processes with no colored
particles in the initial state

Extension to hadron initiated processes conceptually clear, work in progress
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