Part I: ⁴⁰K analysis results

INFN Istituto Nazionale di Fisica Nucleare Genova

1

Christophe Hugon

Few word about the analysis

- The used software is NReader
 - Presented in previous collaboration meetings
 - Code and full documentation available here: http://www.ge.infn.it/~chugon/NReader/documentation/html/
- Only events from the random trigger are kept
- The data are from April to December 2013

Total rate

Christophe Hugon

Total rate

INFN

Genova

Christophe Hugon

Coincidence rate

Coincidence rate

Genova

Christophe Hugon

⁴⁰K estimation from fit

I N F N

Genova

03/21/14

⁴⁰K estimation from fit

⁴⁰K estimation from fit

Christophe Hugon

Bonus slides: test of the Fit Method

Given by a 3 parts mathematical approach Permit to take in account the full pulse

Can decrease the resolution from 5 ns to less than 1 ns (see examples)

Successfully used for time calibration tests (see previous collaboration meetings)

Can be tested thanks the ⁴⁰K peak

Fit Method

INFN

Genova

03/21/14

Christophe Hugon

11

Fit method

Genova

03/21/14

12

Conclusion

- As we will see from the simulation, we observe an higher rate on NEMO
- The total rate and coincidence rate looks quite stable during the time
- The fit method give coherent timing (the total value cannot be easily extracted because all the pulses cannot be fitted)

Part II: ⁴⁰K GEANT4 simulation

03/21/14

Christophe Hugon

Overview

- Geometry definition
 - Glass and PM/OM
 - Inside (reflective areas, dinods...)
- Collection efficiency simulation based on Scans (Alex and Oleg)
- Simulation of K40
 - Illustration
 - Results

Precise geometry

Photocathode (sphere)

Photocathode (ellipsoid)

Reflective glass (ellipsoid)

Reflective glass (cone)

Reflective glass (tub)

Only geometry is modified It will use exactly the same physics model

It uses mathematics calculation

for each component's size/position, based on the Hamamatsu specifications

Eg : piece of sphere angle and small radius of ellipsoids :

 $\alpha = \arcsin(R_{sphere}/p_{sphere})$

$$u_{ellips} = \sqrt{\left(\frac{(Bulb_{thick}^{2})}{(4*(1-p^{2}*a^{2}))}\right)};$$

p is the projection of the photocathode, R its radius, a and b the big and small radius of the ellipsoid. Bulb is the full ellipsoid z size

Based on some parameters, any Antares' like PMT shape can be tested

> FN Istituto Nazionale di Fisica Nucleare Genoova

Precise geometry, in details

Cap simulation

N 두 N

Genova

The NEMO OM is placed inside an "Hat" which hide the back and a part of the border

In the simulation presented, this element is integrated

KM3NeT

Christophe Hugon

Collection efficiency from scans

- Only ANTARES module experimental input
- Start from eta_theta = 1
- Assume that the difference is intrinsic of the PM
 - Photocathode inhomogeneity
 - Electron collection
- Tabulate the ratio between simulation and experimental inputs, report to the PM position.
- Use the ration as the theta_eta function

Christophe Hugon

Scan fit of simulation to ANTARES modules

Scan fit of simulation to ANTARES modules

NFN

Genova

With the same PM electron collection, bigger efficiency expected (lens effect)

=> more background events expected (single and coincidences)

Simulation of K40

Preliminary results

INFN

Genova

Antares results for 15.8 Hz expected:

Minimum value:14.87 HzMean value:24.57 HzMax value:51.09 Hz

The minimum fit with experimental value. The effective area is ~77cm⁻² The mean for ANTARES fit with laroslav results. The effective area is 96 cm-2 The maximum value seems too huge to be physics

Preliminary results

I N F N

Genova

Antares results for 15.8 Hz expected:Minimum value:14.87 HzMean value:24.57 HzMax value:51.09 Hz

KM3NeT-it results for ~20 Hz expected: Minimum value: 19.4 Hz Mean value: 36.86 Hz Max value: 77.6 Hz

The minimum fit with experimental value. The mean is much stronger than the expected value The maximum value seems too huge to be physics

KM3NeT

03/21/14

24

Preliminary results with an effective area of 80cm²

INFN

Genova

Antares results for 15.8 Hz expected:

Minimum value:6.79 HzMean value:14.22 HzMax value:32.66 Hz

KM3NeT-it results for ~20 Hz expected:

Minimum value:11.64 HzMean value:26.19 HzMax value:51.41 Hz

The minimum fall very low from experimental value. The mean is much closer to the expected value. ANTARES is a bit low and NEMO a bit high The maximum value seems huge but was seen

But be careful!!!

The rescaling of the collection efficiency is not like the fitting of experimental value!

- That's why:
- The rescaled value does not give the same results as the minimum of the fit
- We see a so different effect on NEMO and ANTARES

We are very dependent on parameters like HV and threshold! We miss experimental input!! for NEMO and ANTARES!

Conclusion for simulation

- Bigger photon detection efficiency expected from NEMO
 - 40K rate should be around 20 Hz. Validated by the data analysis
- Perspective on KM3NeT-it and fr
 - 3 inches PM under development
- Encouraging results for simulation for Antares
 - Needs work on the total electron collection efficiency. (Use of 80 cm² of effective area for the OM as reference, as in km3 simulation)

Overview

Title 1

Title 2

