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Abbreviations

GA: Genetic Algorithm

MOGA: multi-objective genetic algorithm
DA: dynamic aperture

NDT: nonlinear driving term

D: insertion device

DW: damping wiggler

DBA: double bends achromat




Outline

What is multi-objective genetic algorithm (MOGA)?
Review of existing methods on dynamic aperture (DA)
optimization

— Minimization of nonlinear driving terms (NDT)

— brute-force MOGA driven by DA tracking simulator

Combination of existing methods creates a new
efficient method

Application on NSLS-Il storage ring
— Bare lattice
— Insertion device integration

Correlation between nonlinear driving terms and DA



What is GA and MOGA

Genetic Algorithm (GA) mimics the evolution of nature:
Crossover: generate children from parents.
Mutation: change the children.
Natural selection: keep only certain number of population.

MOGA (Multi-Objective Genetic Algorithm)
1: Initialize population (first generation, random)
2: repeat (generation by generation)

3: crossover: 2 parents generate 2 children.

4: mutation: change children.

5: calculate children’s parameters (parallel computation)
6: natural selection: “sorting” (Non-dominated sorting)

7: until stop(reach maximum generation, find solution, . . .)
8: a bunch of candidate solutions available, select the suitable solutions



Review of existing methods on DA
optimization

* Conventional method: minimizing the nonlinear
driving terms (NDT) with weights
— NDTs can be calculated by
e perturbation theory of Hamiltonian system
e TPSA (non-symplectic)
* Lie algebra (symplectic)
— Difficulties of specifying optimization goal
* There are numerous NDTs. Which ones are dominating DA?

* If only single penalty function is used, how to specify weight
to each NDT (difficulty of weighting was mentioned by M.
Ehrlichman for the SLS upgrade).

* Multi-objective optimization is suitable for this case.



Continued

* brute-force MOGA driven by tracking simulator have
been implemented by

— L. Yang, Y. Li, et al. (PRST-AB, 2011)

* Objectives: on-, and off-momentum dynamic apertures

— M. Borland, integrated to ELEGANT

e Objectives: on-momentum DA and Touschek lifetime
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Difficulties of the brute-force
MOGA:

No physics is behind

Very time-consuming in
implement direct DA tracking
(especially when your
computer is not powerful)
Difficulty was mentioned by
R. Bartolini — several weeks
for one run



Combination of existing methods
creates a new efficient method

 We found that a strong correlation between DA and
NDTs does exist .(L. Yang & Y. Li, M. Borland & L.
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Figure 3. Automatic reduction of the driving terms after
the optimization although DA is set as one of the
objectives during the optimization.

M. Borland & L. Wang



continued

 New method: using MOGA to optimize the
NDTs rather than to implement DA tracking

— Be efficient: calculation NDTs is much cheaper
than DA tracking

— Be of “physics”: having small low order NDTs is an
necessary condition for larger DA

* Both geometric and chromatic NDTs needs to be
minimized simultaneously (Y. Cai’s talk).

e Some critical terms (tune with amplitude, nonlinear
chromaticity) can be controlled as optimization
constraints



MOGA optimization by varying
geometrical sextupoles in NSLS-II

1. Choose the number of initial populations and the number of
generations;

Start from random seeds for sextupole configuration;

For each configuration, calculate NDTs up to 2"9 order using the
formulae derived by C-X. Wang (> 30 terms)

4. Implement standard MOGA iteration

5. Using DA tracking code to pick the best solution(s) from the last
generation

6. If nosatisfied DA is found, repeat step 3-4, or some modification
on linear optics might be necessary

A pure Python script of implementing parallel optimization have been
developed at BNL.
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* Energy: 3GeV

NSLS-Il ring

 Emittance: 2nm w/o DWs, 1nm 3x6.8m DWs
e Lattice: 30-standard DBAs (Chasman-Green)
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Requirements for DA:

DA >= 15mm at high-beta straight
for efficient injection

Energy acceptance >2.5% for
sufficient beam lifetime

Tolerate numerous insertion
devices and engineering errors



Application on

Choosing tune as 33.20/16.25
Using one super-cell for NDT
optimization

4000 populations, 100 generations
with parallel calculation (several
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Application on ID integration
(damping wigglers as example)

%

i

2x3.4 m Damping Wiggler in 1/3 ring

Match linear optics to
accommodate various IDs
Adjust tune slightly to
avoid dangerous
resonance line

Re-run the parallel
MOGA optimization



Multiple candidate solutions with one
run (engineering tolerance included)
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Correlation between DAs and NDTs

for bare lattice
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More analyses are still needed to
better understand the correlation

1. Having small NDTs is an necessary but insufficient condition for having a large DA
2. Sufficient population per generation is the key parameter to get some good solutions



Performance comparison between the
brute-force method and the new one

e Brute-force method (L. Yang, and Y. Li, PRST-
AB, 2011)

WW
momentum and off-momentum particles, we use a popu=
lation of 6000, and run for 300 generations. With 96 xeon
2.33 GHz CPUs in a Sun Grid Engine cluster , it takes less
than a week to get a final population shown in Fig. 1.
During f . S : : Itina]

* New method: It takes less than 12 hours to
finish one run for NSLS-II.




Summary

* Applying MOGA to optimize the nonlinear driving
terms is much efficient than the brute-force
method of optimizing DA directly.

 Having small low order NDTs is an necessary, but
not sufficient condition for have a decent DA.

e Using MOGA, for the first time, we show that in
tune space, the area around (33.20/16.25) is a
good region having a good DA for the NSLS-II ring
(official tune: 33.22/16.26).
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Smooth Accumulation up to 50mA for
the first time on July 11, 2014

Storage Ring Beam Current and Lifetime
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