Longitudinal gradient super-bends and anti-bends for compact low emittance light source lattices

Andreas Streun, Paul Scherrer Institut, Switzerland

Low emittance rings workshop IV, Frascati, Sep. 17-19, 2014
Recall: paths to low emittance
Recall: the TME cell
The LGAB cell
Longitudinal gradient bends
Anti-bends
Application to SLS upgrade
Conclusions

References

AS & Albin Wrulich, *Compact low emittance light sources based on longitudinal gradient bending magnets*, submitted to NIM A

Recall: paths to low emittance

\[\varepsilon_{xo} [\text{m} \cdot \text{rad}] = \bar{C}_q \gamma^2 \frac{I_5}{I_2 - I_4} \]

\[\sigma_\delta^2 = \bar{C}_q \gamma^2 \frac{I_3}{2I_2 + I_4} \]

\[\Delta E [\text{keV}] = \bar{C}_\gamma \gamma^4 I_2 \]

Equilibrium beam parameters of a flat lattice

- \(\varepsilon_{xo} \): natural horizontal emittance
- \(\sigma_\delta \): rms relative momentum spread, \(\delta = \Delta p/p \)
- \(\Delta E \): energy loss per turn

\(I_2, I_3, I_4, I_5 \): synchrotron radiation integrals

\(\bar{C}_q = 3.83 \cdot 10^{-13} \text{ m} \quad \bar{C}_\gamma = 9.60 \cdot 10^{-13} \text{ keV} \)

\(3.18 \)
\(\varepsilon_{xo}[m \cdot \text{rad}] = \tilde{C}_q \gamma^2 \frac{I_5}{I_2 - I_4} \quad \sigma_\delta^2 = \tilde{C}_q \gamma^2 \frac{I_3}{2I_2 + I_4} \quad \Delta E[\text{keV}] = \tilde{C}_\gamma \gamma^4 I_2 \)

Optics

\[I_5 = \int |b|^3 \mathcal{H} \, ds \rightarrow \text{min} \]

- horizontal focus in each dipole
- many small dipoles of angle \(\Phi \ll 1 \)

multibend achromat (MBA) lattice

Power

\[I_3 = \int |b|^3 \, ds \]

\[I_2 = \int b^2 \, ds \rightarrow \text{max...} \]

- *damping wigglers (DW)*

Damping

\[I_4 = \int b \eta (b^2 + 2k) \, ds \rightarrow -I_2 \]

\[J_x = 1 - \frac{I_4}{I_2} \rightarrow 2 \]

- *gradient bends* for vertical focusing \((bk < 0) \)

orbit curvature \(b = 1/\rho = B/(p/e) \)
dispersion’s betatron amplitude \(\mathcal{H} = [\eta^2 + (\alpha \eta + \beta \eta')^2] / \beta \)
dispersion \(\eta \), derivative \(\eta' \)
hor. betafunction \(\beta \), \(\alpha = -\beta' / 2 \)
transverse gradient \(k \) \((k > 0 \) hor. foc.)

MBA lattice without wigglers

\[\varepsilon_{xo}[m \cdot \text{rad}] = \frac{\tilde{C}_q \gamma^2}{12\sqrt{15}} \frac{\Phi^3}{J_x} \cdot F \]

\(F = 1 \Leftrightarrow \text{TME} \)

(theoretical minimum emittance)

MBA & DW

need space!
Recall: the TME cell

- Lowest emittance of a conventional lattice cell
 - homogenous (constant b), short ($\Phi = bL \ll 1$) bending magnet
 - set $\alpha_0 = \eta'_o = 0$ at bend center (symmetry); find minimum $H(\beta_o, \eta_o)$:
 \[\Rightarrow \text{theoretical minimum emittance (TME) for} \]
 \[\beta_o^{\text{TME}} = \frac{L}{2\sqrt{15}} \quad \eta_o^{\text{TME}} = \frac{\Phi L}{24} \rightarrow F = 1 \rightarrow \varepsilon_{xo}^{\text{TME}} [\text{m} \cdot \text{rad}] = \frac{\tilde{C}_q}{12\sqrt{15}} \gamma^2 \]

- Periodic symmetric cell:
 $\alpha = \eta' = 0$ at ends
 \[\Rightarrow \text{matching problem} \]
 \[\mu^{\text{TME}} = 284.5^\circ \]

- 2nd focus, useless
- long cell
- overstrained optics
- Deviations from TME conditions

\[F = \frac{\varepsilon_{xo}}{\varepsilon_{xo}^{\text{TME}}} \quad r = \frac{\beta_o}{\beta_o^{\text{TME}}} \quad d = \frac{\eta_o}{\eta_o^{\text{TME}}} \]

- Ellipse equations for emittance

\[\frac{5}{4} (d - 1)^2 + (r - F)^2 = F^2 - 1 \]

- Cell phase advance

\[\tan \frac{\mu}{2} = \frac{6}{\sqrt{15}} \frac{r}{(d - 3)} \]

- Real cells: \(\mu < 180^\circ \Rightarrow F \sim 3.6 \)

How to get \(F < 1 \) and \(\mu < 180^\circ \)?

The LGAB cell

- Detuned TME cell vs. longitudinal-gradient/anti-bend cell
 - both: angle 6.7°, $E = 2.4$ GeV, $L = 2.36$ m, $\Delta \mu_x = 160°$, $\Delta \mu_y = 90°$, $J_x \approx 1$

TME: $F = 3.4$, $\varepsilon = 990$ pm

LGAB: $F = 0.69$, $\varepsilon = 200$ pm

- β_x, β_y, η
- dipole field, quad field, total field
- at $R = 13$ mm

\[\text{longitudinal gradient bend} \quad \text{anti-bend}\]
Longitudinal gradient bends

\[I_5 = \int_L \left| b(s) \right|^3 \mathcal{H}(s) \, ds \quad b(s) = B(s)/(p/e) \]

\[\mathcal{H} = \eta^2 + (\alpha \eta + \beta \eta')^2 / \beta \]

- Longitudinal field variation \(b(s) \) to compensate \(\mathcal{H}(s) \) variation

- Beam dynamics in bending magnet
 - Curvature is source of dispersion: \(\eta''(s) = b(s) \rightarrow \eta'(s) \rightarrow \eta(s) \)
 - Horizontal optics \(\sim \) like drift space: \(\beta(s) = \beta_0 - 2\alpha_0 s + \frac{1+\alpha_0^2}{\beta_0} s^2 \)
 - Assumptions: no transverse gradient \((k = 0)\); rectangular geometry

- Variational problem: find extremal of \(\eta(s) \) for
 \[I_5 = \int_L f(s, \eta, \eta', \eta'') \, ds \rightarrow \min \text{ with functional } f = \mathcal{H}(s, \eta, \eta', \eta'') \mid \eta''' \mid^3 \]
 - too complicated to solve
 - mixed products up to \(\eta^{(4)} \) in Euler-Poisson equation...

\rightarrow use special function \(b(s) = f(s, \{ a_k \}) \) with parameters \(\{ a_k \} \):
 - variational problem \(\rightarrow \) minimization problem for \(\{ a_k \} \)

\rightarrow numerical optimization: find extremal; suggest functions \(f \)
Half bend in N slices: curvature b_i, length Δs_i

Knobs for minimizer:
$\{b_i\}, \beta_0, \eta_0$

Objective: I_5 (or $\varepsilon \sim I_5 / I_2$)

Constraints:
- length: $\Sigma \Delta s_i = L / 2$
- angle: $\Sigma b_i \Delta s_i = \Phi / 2$
- [field: $b_i < b_{\text{max}}$]
- [optics: β_0, η_0]

Results:
- hyperbolic field variation
 (for symmetric field, dispersion suppressor bend is different)
- $I_5 / I_5^{\text{hom}} = 0.34, \ I_2 / I_2^{\text{hom}} = 2.5 \rightarrow \varepsilon / \varepsilon^{\text{hom}} = 0.13$
- Trend: $b_0 \rightarrow \infty, \ \beta_0 \rightarrow 0, \ \eta_0 \rightarrow 0$
Analytical optimization

- Given function \(b(s) = f(s, \{a_k\}) \), parameters \(\{a_k\} \)
 - \(\partial I_5/\partial \beta_0, \partial I_5/\partial \eta_0 = 0 \) → emittance & matching
 - \(\{\partial I_5/\partial a_k\} = 0 \) → optimum parameters

- Useful simple functions for field profiles:
 - high field magnets: \(\textbf{hyperbola} \) \(b(s) = \frac{b_0}{(1 + hs)^p} \)
 (parameters \(h, p \))
 → superbends
 → hard X-ray photons from field peak!
 - low field magnets: \(\textbf{step function} \)
 \(b(s) = \begin{cases} b_0 & \text{for } 0 < s < m \\ b_1 & \text{for } m < s < L/2 \end{cases} \)
 (parameter \(m \))
 → most simple design

numerical optimization results
Numerical optimization of field profile for fixed β_0, η_0

- Emittance (F) vs. β_0, η_0 normalized to data for TME of hom. bend

Small (~0) dispersion at centre required, but tolerant to large beta function
Anti-bends

- General problem of dispersion matching:
 - dispersion production in dipoles → “defocusing”: $\eta'' > 0$
- Quadrupoles in conventional cell:
 - dispersion is horizontal trajectory: quads treat η and β_x in same way.
 - over-focusing of horizontal beta function β_x
 - insufficient focusing of dispersion η
 - striking example: the TME cell
 → disentangle η and β_x!
- use negative dipole: anti-bend
 - kick $\Delta\eta' = \psi$, angle $\psi < 0$
 - out of phase with main dipole
 - negligible effect on β_x, β_y
- Side effects on emittance:
 - main dipole angle increase by $2|\psi|$
 - anti-bend located at large H
 → in total, still lower emittance

relaxed TME cell, 5°, 2.4 GeV, $J_x \approx 2$
Emittance: 500 pm / 200 pm
Half quad anti-bend

- Recall: emittance reduction via I_4
 → get \approx half emittance

 $$I_4 = \int b \eta (b^2 + 2k) \, ds \rightarrow -I_2 \Rightarrow J_x = 1 - \frac{I_4}{I_2} \rightarrow 2$$

- $2k \gg b^2, \quad \eta > 0$
 → $b > 0, \quad k < 0$
 defocusing gradient bend

 → $b < 0, \quad k > 0$
 focusing gradient anti-bend

- need horizontal focusing at anti-bend location anyway
 (out of phase with main bend).

- convenient magnet design:
 anti-bend = half quadrupole
Plans for an upgrade of the Swiss Light Source (SLS)
- SLS emittance now: **5500 pm**

M. Ehrlichman, *First studies on a possible SLS upgrade*, Wednesday 10:10

SLS constraints:
288 m, 12 straights, 2.4 GeV → rather **compact** lattice!

→ LGAB-HMBA lattice
hybrid multibend achromat incorporating longitudinal gradient bends and anti-bends

- **100 – 200 pm** emittance: factor **50 – 25** improvement.
- hard X-rays (100 keV) from LG-superbend field peak.
a) most aggressive design

- ultra-low emittance: $\varepsilon = 73$ pm! (\(\approx 18\) m / 30° arc at 2.4 GeV)
- \(\approx\) feasible magnets, \(\approx\) sufficient dynamic aperture
- quasi isochronous (MCF $\alpha = -5 \cdot 10^{-5}$) and nonlinear
- too short bunches, insufficient energy acceptance
- large normalized chromaticities $-\xi/Q = 3.9 / 4.3$
b) compromise design

- Acceptable emittance: \(\varepsilon = 183 \text{ pm} \)
- \(\approx \) feasible magnets, \(\approx \) sufficient dynamic aperture
- Large MCF (\(\alpha = +1.3 \cdot 10^{-4} \)) \(\Rightarrow \) bunch length & E-acceptance
- Large normalized chromaticities \(-\xi/Q = 4.1 / 6.5 \)
- Only partial exploitation of LGAB scheme
c) negative alpha design

- Acceptable emittance: $\varepsilon = 162$ pm
- Large negative MCF ($\alpha = -1.0 \cdot 10^{-4}$)
- Low normalized chromaticities $-\xi/Q = 2.0 / 2.9$
- Full exploitation of LGAB scheme: relaxed focusing.

→ work in progress...
Conclusions

- **Longitudinal gradient bends** ...
 - ... provide lower emittance than the TME for homogenous bends.
 - ... offer the double use to provide low emittance and hard X-rays.
 - ... can be described well by hyperbolae (high field) or step functions (low field).
 - ... require very small dispersion at focus,
 - ... but tolerate large values of horizontal beta function at focus.

- **Anti-bends** ...
 - ... disentangle dispersion and horizontal beta function,
 - ... are thus well suited to provide the matching for LG bends.
 - ... introduce negative momentum compaction.

- **The LGAB cell** ...
 - ... combines longitudinal gradient bends and anti-bends.
 - ... offers a lattice solution for compact low emittance rings.