Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany) Budker Institute of Nuclear Physics (BINP, Novosibirsk, Russia)

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE

(A.Papash - on behalf of joint KIT and BINP team)

A.Papash*, A.-S.Mueller, KIT, 76344, Karlsruhe, Germany

E.Levichev, P.Piminov, S.Sinyatkin, K.Zolotarev BINP, 630090, Novosibirsk, Russia

Abstract

- modern technologies allow to essentially improve performance of old generation budget light sources in a cost efficient way
- feasibility studies for a <u>compact</u> low emittance synchrotron light source were performed
- a low emittance lattice based on the <u>compact</u> ANKA ring geometry (L=110.4 m) was investigated
- TME cell with SPLIT bend and quadrupole lens in-between would permit to reduce horizontal emittance of ANKA from 50 nm·r (TME) ÷ 90 nm·r (DBA) down to ~6 nm·r (D=D'=0 in straight sections) with not-vanishing dynamic aperture
- natural chromatic aberrations are compensated by pair of non-interleaved sextupole lenses separated by "-I" unit transfer matrix of betatron oscillations
- second order (sextupole) aberrations are cancelled in such system providing the approximation of thin sextupole lens pairs is applied
- third and higher order aberrations still exists but its strength is essentially less than the second one

Abstract (2)

- thanks to the cancellation of second order aberrations the Dynamic Aperture opens in the compact low emittance ring up to the level sufficient for the beam injection and storage
- the momentum acceptance of split lattice ring with "cancelled" sextupole aberrations is improved in few times with respect to present ANKA ring
- further reduction of the phase space volume requires to brake "--I" symmetry and add extra families of sextupoles, locate an additional high order field elements inside the quadrupoles, optimize the phase advance between sextupole families, shift the betatron tune point, enlarge the sextupole strength
- the proposed low emittance lattice might be considered as a model example of new generation of compact and not-expensive light sources
- compact, highly effective and reliable synchrotron light source of low cost should be a good option for many users from universities, laboratories, institutes, companies etc.

ANKA RING. Original Double Bend Achromat cell

Table 1 Main parameters of the storage ring

General task (objectives)

ANKA – present ring

Energy 2.5 GeV

Circumference 110.4 m

Four short (2.4 m) straight sections

Four long (5.6 m) straight sections

Natural emittance 50 nm·rad (TME) 90 nm·rad (DBA)

Low emittance storage ring based on ANKA Light Source

2.5 GeV

same infrastructure ~110 m

Same location and direction

Same position and direction

Natural emittance $\sim 5 \div 10$ nm·rad

Compact, low cost, highly effective and reliable synchrotron light source should be a good option for many users from universities, laboratories, institutes, companies etc.

Main constraints of low emittance ANKA

- two 11.25° bends instead of one 22.5° bend -- to reduce emittance
 (split of 22.5° bend into three parts is not fitted into ANKA circumference)
- (Almost) same circumference to keep present beam lines and infrastructure
- Dispersion free straight sections. Option: dispersive straight sections
- position and direction of Insertion Devices sources should be unchanged
- (Almost) same length of straight sections to accommodate IDs, cavities etc.
- Large dynamic aperture (≥ 10 mm horizontal at injection azimuth)
- Sufficient momentum acceptance \geq +-2%
- Full energy top-up injection from LINAC (MAX IV type) either from low emittance booster synchrotron based on <u>split</u> lattice (32 bending magnets)
- Magnets: bend field ≤ 1.7 T, gradient in dipole ≤ 10 T/m,
- gradient in quadrupole $\leq 100 \text{ T/m}$ (preferable $\leq 70 \text{ T/m}$),
- gradient in sextupole $\leq 3000 \text{ T/m}^2$ (preferable $\leq 1000 \text{ T/m}^2$),
- Inscribed diameter of quads and sextupoles openings ~25-30 mm (present \emptyset =70 mm)

Split cell and "-/" condition

MA in (very) compact low emittance cell. BINP suggested to arrange the sextupoles in "-/ " pairs. This system cancels all aberrations in approximation of thin lenses

 $\vec{Q2}$

5.

6.

Q3

0.09 0.09 (m) q 0.08 q

0.07

0.06

0.05

0.04

0.03

0.02

0.01

8

7.

Original (left) and modified (right) TME cell with split bend and quad in-between. Q1 allows to tune phase advance and optimize "-/" condition

Different options of low emittance ANKA optics

Verison	-I	<i>ɛ</i> x(nm)	A _x (mm)	$\beta_{x_0}(\mathbf{m})$	MA (%)
V08.5	=I	8.6	-14+19	7.5	±6
V08.8	$\approx -I$	6.2	-11+9	13	±4
V23.0	$\sim -I$	4.9	-6+5	15	±1.5
V02.4	no –I	2.5	±1	10	±0.5

Parameters of different lattice versions

Version	Original	V08.5	V08.8	V23.0
Qx/Qy	6.8/2.6	10.83/10.34	12.36/10.77	14.32/9.57
Cx/Cy	-12.3/-14.7	-21.5/-40.4	-24.8/-44.5	-39.9/-38.2
\mathcal{E}_{x} (nm)	83	8.6	6.2	4.9
Energy spread	9.02E-04	1.31E-03	1.21E-03	1.24E-03
α	9.15E-03	4.69E-03	3.60E-03	3.07E-03
Energy loss, MeV	6.22E-01	5.75E-01	5.75E-01	5.75E-01
Jx/Jy/Je	0.97/1/2.03	2.11/1/0.89	1.96/1/1.04	2.01/1/0.99
	Maximum	magnet param	eters	
B(T)/Gb(T/m)	1.5/-	1.39/-9.4	1.39/-10.7	1.39/-13.1
Gm× L (T/m*m)	20×0.32	70×0.24	80×0.2	90×0.1
Sm× L (T/m2*m)	700×0.1	1500×0.15	3100×0.15	3300×0.15

Central Low emittance cell

TME condition $\beta x = \min, Dx = \min$ in dipoles

central quadrupole adjusting "--I" condition at the cell ends where Sx are placed

LE ANKA cell with dispersion suppressor (1/8 of ring circumference)

Ē

two dispersion suppressors dipole + quads (3Q and 2Q) adjust betatron functions $\beta x, y$ for injection and for *ID*

$$\beta y = low$$

 $\beta x = high$

Ring period (a quarter of the LE ANKA circumference).

11

Geometry of original and new ANKA lattice

<u>One-eighth</u> of the magnet sequence: dipoles are blue, quads are red and sexts are green.

One-eighth of the new ANKA lattice superimposed over the old one

Yellow $- 22.5^{\circ}$ bendsBlue $- 11.25^{\circ}$ bends

LE ANKA main parameters

Circumference	m	110.15
Revolution period	ms	0.367
Betatron tunes, h/v		10.84/10.34
Emittance	nm	8.6
Betatron coupling	%	0.5
Energy spread		1.3×10 ⁻³
Momentum compaction		4.65×10 ⁻³
Energy loss/turn	MV	0.575
Damping partition numbers, h/v/l		2.11/1/0.89
Damping time, h/v/l	ms	1.5/3.2/3.6
Bunch length	mm	10
RF voltage	MV	2.2
Harmonic number		184
RF frequency	MHz	501
RF acceptance	%	±2
Synchrotron tune		1.07×10 ⁻²
Radiation integrals, I_1	m	0.512
I_3	m ⁻²	0.174
$I_2 / I_4 / I_5$	m ⁻¹	1.05/ -1.17 / 2.07×10 ⁻³

Nonlinear beam dynamics

DA reduction due to the residue (corrected) Closed Orbit Distortion (50 µm displacement) Resonance pattern around the tune point (O), Points (A) and (B) correspond to the horizontal and vertical border of Dynamic Aperture

LE ANKA life time and growth rates

Touschek+IBS lifetime > 20 hours ----Growth of energy spread due to IBS is only 10^{-3} thanks to the suppression by the horizontal radiation damping τ =1.5 ms. **However the life time could be reduced to ~3 hours if bunch current is increased to 10 mA**

$$\tau_T(hours) \approx \frac{27.2}{I_b(mA)}$$

-- Off-energy dynamical Momentum Acceptance $\pm 6\%$ due to the nonlinear motion

-- MA= $\pm 4\%$ limited by the off-energy particle displacement and loss at the vacuum chamber wall (25-mm-diam round pipe) in the lattice dispersive region

-- RF bucket height = $\pm 2\%$ (present ANKA **RF** system four accelerating cavities of 500 MHz with total voltage of **2.2 MV**)

Ener	gy	2.5 GeV		
Compactio	on factor	4.65×10 ⁻³		
Energy lo	oss/turn	0.575 Me	eV/turn	
Total RF	voltage	2.2 M	ſV	
RF frequ	uency	500 M	Hz	
Harmonic	number	184	ļ	
Energy acc	ceptance	2.02 % (RF bucket)		
Bunch c	Bunch current		nA	
Particles	/bunch	2.78×1	109	
Total current				
Total cu	rrent	200 mA (90% f	illing factor)	
Total cu Betatron c	oupling	200 mA (90% f 0.5 9	illing factor) %	
Total cu Betatron c Energy s	oupling pread	200 mA (90% f 0.5 % 1.31×1	illing factor) % 10 ⁻³	
Total cu Betatron c Energy s Hor.dampi	oupling pread ing time	200 mA (90% f 0.5 % 1.31×1 1.5 n	illing factor) % 10 ⁻³ ns	
Total cu Betatron c Energy s Hor.dampi Nominal pa	oupling pread ing time trameters	200 mA (90% f 0.5 % 1.31×1 1.5 n Parameters	illing factor) % 10 ⁻³ ns with IBS	
Total cuBetatron cEnergy sHor.dampiNominal paH emittance	oupling spread ing time <i>rameters</i> 8.56 nm	200 mA (90% f 0.5 % 1.31×1 1.5 m <i>Parameters</i> H emittance	illing factor) % 10 ⁻³ ns with IBS 8.56 nm	
Total cuBetatron cEnergy sHor.dampiNominal paH emittanceV emittance	oupling opread ing time <i>rameters</i> 8.56 nm 0.0428 nm	200 mA (90% f 0.5 % 1.31×1 1.5 m <i>Parameters</i> H emittance V emittance	illing factor) % 10 ⁻³ ns <i>with IBS</i> 8.56 nm 0.0428 nm	
Total cuBetatron cEnergy sHor.dampiNominal paH emittanceV emittanceBunch length	arrent oupling opread ing time <i>trameters</i> 8.56 nm 0.0428 nm 10.0 mm	200 mA (90% f 0.5 % 1.31×1 1.5 m <i>Parameters</i> H emittance V emittance Bunch length	illing factor) % 10 ⁻³ ns <i>with IBS</i> 8.56 nm 0.0428 nm 10.0 mm	
Total cuBetatron cEnergy sHor.dampiNominal paH emittanceV emittanceBunch lengthLife time no IBS	irrentouplingouplingopreading timerameters8.56 nm0.0428 nm10.0 mm81835 s	200 mA (90% f 0.5 % 1.31×1 1.5 m <i>Parameters</i> H emittance V emittance Bunch length Life time +IBS	illing factor) % 10 ⁻³ ns with IBS 8.56 nm 0.0428 nm 10.0 mm 81872 s	

modified Piwinski approximation (CIMP). K.Kubo, S.K.Mtingwa and A.Wolski, Phys. Rev. ST Accel. Beams **8**, 081001 (2005).

Dependence of the Momentum Acceptance and bunch length on the RF voltage

LE ANKA require 6 MV RF voltage to reach 4% MA

$U_{\mathrm{RF}}(\mathrm{MV})$	0.62	0.79	1.12	1.54	2.20	3.00	3.87	5.06	6.37
$\sigma_{\rm s}({\rm mm})$	29.8	19.8	14.8	12.1	10.0	8.5	7.4	6.5	5.8
$\Delta E/E$ (%)	0.19	0.56	1.04	1.49	2.02	2.53	3.00	3.53	4.03

LE ANKA life time and growth rates (2)

Gas lifetime

Several processes of particle loss determine the beam lifetime in electron storage rings. The following processes related to the residual gas pressure are essential:

- * elastic scattering on nuclei of the gas atoms,
- * bremsstrahlung on nuclei,
- * elastic scattering on electrons of the gas atoms,
- * inelastic scattering on electrons of the gas atoms.

Initial data for the vacuum lifetime estimation

Energy (GeV)	2.5
Residual pressure (nTorr)	1
Gas composition	N ₂
Momentum acceptance (%)	4%
Maximum β_{y} (m)	17
Average β_{y} (m)	6.8
Minimum vertical aperture in ID (mm)	8

Residual gas lifetime (2.5 GeV, 1 nTorr average)

Lifetime	Hours
Bremsstrahlung, τ_b	80.4
Elastic on nuclei, τ_{ns}	66.6
Inelastic on electrons, τ_{ie}	228.5
Elastic on electrons, τ_{es}	1153
TOTAL, τ_{gas}	30.6

LE ANKA MAIN MAGNET ELEMENTS gradient bending magnets

Bending magnet field map

Profile of upper half of dipole

Main specifications of gradient magnet (Field level corresponds to 2.5 GeV beam energy)

Туре	Defocusing bend
Number	32
Shape	C-shape
Effective magnetic length	1.18 m
Curvature radius	6.0097 m
Bending angle	11.25° (196.349 mrad)
Steering angle	±1 mrad
Sagitta	28.938 mm
Vertical gap at reference orbit	26 mm (±13 mm)
Field at the reference orbit	1.38761 T $(I = 620 \text{ A})$
Quadrupole strength K_1	-1.15139 m ⁻²
Good field region (h×v)	$(\pm 12.5) \times (\pm 12.5) \text{ mm}^2$
Field quality, $\Delta B/B_0$	±1×10 ⁻³

bending magnet parameters

Main coil						
Number of coils		2				
Number of turns/coil		24				
Total number of turns		48				
Copper conductor size	mm ²	12×12				
Cooling hole diameter	mm	8				
DC resistance/dipole	mΩ	12.8				
Total inductance	mH	17				
Voltage per magnet	V	15.9				
Power per magnet	W	9830				
No of water inlets/dipole		3				
Water pressure drop	bar	6				
Temperature drop	°C	6.2				
Total flow rate/dipole	l/min	23				
(Correction coil					
Bending angle	mrad	1				
Excitation current	А	7.6				
DC resistance	Ω	1.3				
Number of turns/coil		10				
Copper conductor diam.	mm	1				
Voltage per magnet	V	9.6				
Power per magnet	W	73				
Weight of dipole		~1700				
Weight of yoke	kg	~1580				
Weight of coils	kg	~115				

Magnetic field uniformity in the units of $\Delta B/B \times 10^4$

Total number			112			LA.
Working gradient		T/m	50 - 7	0		
Inner pole diameter		mm	Ø26			
Effective magnetic le	ngth	mm	100 - 2	50		
Good field region		mm	Ø24			
Gradient quality		%	≤ 0.1			
Effective length	m	0.1	0.125	0.15	0.175	0.25
Number of magnets		32	16	16	40	8
Max gradient	T/m			68		
Bore radius	mm			13		
Excitation current	А			523		
Coils/magnet				4		
Turns/coil		9				
Conductor size	mm ²	8 × 8				
Cooling hole	mm			Ø3		
Voltage/magnet	V	2.7	3.0	3.3	3.5	4.4
Resistance/magnet	mΩ	5.1	5.7	6.2	6.8	8.4
Total inductance	mH	0.7	0.9	1.0	1.2	1.7
Power/magnet	W	1400	1550	1702	1853	2307
Water inlets/quad		4	4	4	4	4
Water pressure drop	bar		-	6	-	
Temperature drop	°C	2.4	2.8	3.3	3.7	5.2
Flow rate/dipole	l/min	8.3	7.9	7.5	7.2	6.4
Yoke weight	kg	50	63	75	88	125
Coils weight	kg	8.5	9	10	11	14
19						

LE ANKA quadrupoles

Quadrupole lamina profile

Quadrupole field map

LE ANKA Sextupoles

Type of sextupole	SF	SD
Number	16	16
Maximum gradient, T/m ⁻²	716	-1580
Inner diameter, mm	30	30
Effective length, m	0.15	0.15
Good field region, mm	Ø24	Ø24
Gradient quality	≤ 1%	$\leq 1\%$

Sextupole field uniformity for 1600 T/m².

The steering coils feeding scheme: h corrector (left) and v corrector (right)

Coils	1	2	3	4	5	6
V corrector	+I	0	-I	-I	0	+I
H corrector	+0.5I	+I	+0.5I	-0.5I	-I	-0.5I

Injection system - I

Injection from inner radius

Name	N	L, m	α , mrad	B, T
BUMP2	2	1.18	-0.97	-0.0068
BUMP1	2	1.18	-4.68	-0.033
KICK1,4	2	0.2	0.63	0.0265
KICK2,3	2	0.2	0.22	0.0092
SEPT01	1	1.2	87	0.604
SEPT02	1	1.8	349	1.62

Injection system - II

Influence of insertion devices (CLIC – IMAGE and CATACT wigglers)

	LESR ANKA	IMAGE	CAT-ACT	IMA+CAT
Emittance	8.54 nm	8.13 nm	8.34 nm	7.98 nm
Energy spread	1.33·10 ⁻³	1.29·10 ⁻³	1.31.10-3	1.28·10 ⁻³
Energy losses	575 <u>keV</u>	638 <u>keV</u>	597 <u>keV</u>	660 keV
Jx/Js	2.14/0.86	2.03/0.97	2.10/0.90	1.99/1.01
Cx/Cz	0.30/2.42	0.35/2.48	0.29/2.42	0.4/2.52

Radiation parameters modification:

3 IMAGE wigglers should decrease the emittance from 8.5 to 6.5 nm.

Vertical betatron tune shift due to wiggler

$$\Delta v_{y} = \frac{1}{8\pi} h_{w}^{2} L_{w} \overline{\beta}_{y}$$

 $h_w = B_w / B\rho$

Dynamic aperture reduction for both wiggler at the maximum field is negligible

Light sources technology trend (R.Bartollini plot)

Conclusion

- It is possible to build low emittance ring based on split ANKA lattice : L=110 m and $\varepsilon = 6$ 8 nm-rad horizontal emittance in the baseline version.
- with damping wigglers emittance might be reduced to ~6 nm
- *-I* transform works well providing the dynamic aperture close to the vacuum chamber border (+-12.5 mm) and +-6% energy acceptance (additional optimization available)
- Parameters of bending magnets, quads and sextupoles are reasonable for production
- Dispersion free straight sections can accommodate strong field insertion devices with extra emittance decrease
- Injection from the MAX IV type linac either from low emittqance booster synchrotron (32 bending magnets) is acceptable

Conclusion

- New generation Light Source
- Compact design
- Low emittance storage ring
- SR Brilliance ~100 times more

Appendix

split cell \rightarrow short focal distances between elements \rightarrow strong quadrupole gradients \rightarrow <u>the absolute value of natural chromaticity grows</u>

In general, in a compact cell the betatron phase advance between chromatic sextupoles is small and DA might be roughly estimated as <u>fixed points</u> of the nearest strong <u>sextupole resonances</u>:

Aperture

 scaling

 factor

 Dynamic _ Aperture

$$\xi_{x,y}$$

more than 30 optics versions have been studies so far.

Sequence of steps

- -- the cell was designed to tune for exact "-*I*" transfer matrix for the horizontal sextupoles *SF* because the horizontal aperture is more important for injection
- -- version with -I condition for both SF and SD families is also available but cell is too long
- -- parameters of cell were tuned for the lowest emittance available in this particular lattice

to further reduce emittance

- -- the "-- *I*" condition was slightly <u>detuned</u> and parameters <u>adjusted</u> for low emittance again
- -- the emittance is decreased but due to the distorted "-*I*" condition the DA is reduced as compared to exact condition
- -- the procedure have been repeated few times

 \sim -- different lattices with smaller emittance but reduced DA were received \rightarrow next slide