

First studies on a possible SLS upgrade

Michael Ehrlichman, Masamitsu Aiba, Michael Böge, Micha Dehler, Angela Saa Hernandez, Lukas Stingelin, Andreas Streun Paul Scherrer Institut

- 1. Motivation for an SLS Upgrade
- 2. Describe SLS2 project scope
- 3. Introduce upgrade concepts
- 4. Studies on SLS2 prototype based on maximal exploitation of those concepts.
- 5. Discuss challenges and program directions
- 6. Recap and conclude

- SLS commissioned in 2000
 - Serving 18 beamlines with >99 % uptime
 - 5.5 nm x 5 pm beams at 400 mA
- New, state-of-the-art machines coming online
 - MAX-IV, NSLS2, ESRF Upgrade, PETRA 3, et. al.
- Need to stay competitive
- Project Goals
 - Replace SLS with significantly lower emittance design
 - Maintain existing building, injector, beam lines
 - Minimize downtime and impact to users
 - Moderate budget (<100 MCHF)

Existing SLS

- TBA Design
 - 12 x 8°+14°+8°
- 3-fold basic periodicity
- $Q_{v} = 20.43$
- $Q_v = 8.74$
- Compact Lattice: 288 m
- Medium Energy: 2.4 GeV
- Emittance
 - horizontal 5.6 nm
 - nominal vert 5 pm
 - LET vert ~1 pm
- Top-up operation: 400±1 PolLux mA NanoXAS
- Normal bends are 1.4 T electromagnets
- Existing superbends are 2.9 T normal conducting super-ferric magnets.

Preserve Existing Facilities

PAUL SCHERRER INSTITUT

12 SC Superbends Installed

- "Standard" MBA design would yield only ~1 nm
- Propose MBA utilizing superbends, longitudinal gradient bends, and antibends
 - Yields ~100 pm or less
- Bend radiation users
 benefit from higher PolLu photon flux & higher NanoXAS photon energy
 - Photons up to 100 keV from a 2.4 GeV ring

Prototype Lattice

- 12 MBA cells.
- **Dispersion-free straights**
- $J_{x} \sim 1.3$
- Longitudinal gradient bend field and antibends minimize I₅ integral
- 73 pm horizontal emittance
- Q_x = 39.417
- $Q_v = 10.755$
- σ_e = 0.11 %
- Initial design: 1-order of magnitude increase in brilliance for photons above 100 eV.

SLS2 Prototype Linear Optics*

MBA bend field and Optics

Undulator & Superbend Brilliance

SR for all ID (SLS dashed lines, SLS2 cont. lines)

SR for BM (SLS: bend and superbend, SLS2 slices with different field for longitudinal gradient bend)

In a longitudinal gradient bend horizontal spectrum is not homogeneous! Every slice emits with a different Ec (up to 1 order magnitude difference!). Possible position monitor based on this property

PAUL SCHERRER INSTITUT

Comparison To Other Contemporary Designs

	SLS2 (low ε prototype)	NSLS 2	PEP-X	MAX-IV
Energy (GeV)	2.4	3	4.5	3
Circumference (m)	288	780	2199	528
Horizontal Emittance (pm)	72	550	11	320
v _x	39.4155	32.35	113.23	42.2
v _y	10.7550	16.28	65.14	14.28
α_{p}	-5.38 10 ⁻⁵	3.7 10-4	4.96 10 ⁻⁵	3.07 10-4
ξ _x	-154.715	-100.	-162.3	-49.8
ξ _y	-46.445	-41.8	-130.1	-43.9
$-\xi_x/v_x$	3.9	3.1	1.2	1.2
$-\xi_{y}/v_{y}$	4.3	2.6	2.0	3.1

• Small linear momentum compaction makes non-linear momentum compaction important.

• High ratio of chromaticity to tune indicates non-linearities will be significant.

Longitudinal Dynamics

Bucket size limited by non-linear roll-off in momentum compaction

- Lattice is below transition
- Higher orders of momentum compaction calculated using TPSA.
- Goal: ±5% bucket.
- Possible solution: use multipoles to manipulate nonlinear momentum compaction to widen bucket.

Nonlinearities & Dynamic Aperture

- On-momentum DA is acceptable.
- Off-momentum DA at ±3% is too small
 - -3% does not actually exist, due to RF bucket

Nonlinear Optimization

- First pass optimizes 3rd and 4th order (in phase space coordinates) driving terms represented in the Lie exponential format and also tune shifts.
 - 25 quantities to optimize
 - 9 sextupole families, 4 octupole families
- Development work
 - SLS1 techniques not adequate for SLS2
 - Including higher order terms in optimization
 - Manipulate higher order compaction to enlarge bucket
 - Manipulate non-linearity chromaticity to limit tune footprint
 - Global optimizers that exploit TPSA
 - Weighting
 - Engineering Tolerances
 - Direct optimization methods

- Initial tracking studies on misaligned & orbitcorrected lattices suggest following "closed orbit on day-1" tolerances:
 - 25 μm absolute girder displacement (SLS1: 300 $\mu m)$
 - 10 μm girder-to-girder displacement (SLS1: 100 $\mu m)$
 - 7.5 μm element-to-girder displacement (SLS1: 50 μm)
- Correction scheme:
 - 192 button BPMs
 - 60 x-ray BPMs at center of bends
 - 192 Correctors
- Beam-based girder alignment during commissioning.

Intrabeam Scattering

- 100 MHZ RF with and without 3HC for various vertical emittance situations.
- Solid: w/o 3rd Harmonic Cavity
- Dotted: with 3rd Harmonic Cavity

Horizontal Emittance (pm)

 100 MHz RF had 1/5 number of buckets, requires 5 mA/bunch

- In low emittance conditions, 66% of emittance generated by IBS
 - Necessitates round beam scheme
- Note: bunch length assumes linear RF bucket

Intrabeam Scattering

Prototype Lattices	Zero Current Radiation Only ε _x	5 mA 100 MHz 5% Bucket 3HC (2x BL) 10 pm ε _y ε _x	1 mA 500 MHz 5% Bucket 3HC (2x BL) 10 pm ε _y ε _x
"First"	86.7 pm	126.3 pm	113.6 pm
"Improved"*	72.8 pm	109.4 pm	95.4 pm
"Positive Compaction"	182.6 pm	209.7 pm	201.5 pm
"Large Negative Compaction"	162.0 pm	199.2 pm	187.2 pm

- IBS is strong for low-ε lattices, but can be dealt with using coupling scheme
- Working on an adjustable skew-quad based scheme for obtaining round beams

- Low emittance, short bunches, and small chamber have strong impact on impedance effects
- RF decisions driven by impedance effects
- 100 MHz or 500 MHz RF
 - We have 500 MHz NC RF already, and could adapt for SLS2
 - 100 MHz RF gives longer bunches
 - Other cavity designs could be purchased or developed inhouse
- 3rd Harmonic Cavity for lengthening
 - Have passive, may go driven
- Small & negative momentum compaction could impact impedance instabilities
- Hiring post doc to examine these effects

- Nonlinearities, Low & Nonlinear momentum compaction perhaps make lowest emittance prototype lattice un-workable.
 - By strengthening or weakening anti-bends, momentum compaction can be made positive or large & negative
 - Trade off is larger emittance
 - Possibly use nonlinear momentum compaction to enlarge bucket
- Design coupling scheme for round beams
 - Strong coupling would impact all aspects of SLS2 (IBS, nonlinearities, operation, etc.)
- And much more ...
 - impedance studies, feedback, correction, ...

- SLS wishes to upgrade and remain a competitive light source.
- "Standard" MBA would not be a significant upgrade.
 5.5 nm -> 1.0 nm
- Lattice based on LGB and anti-bends may offer a lowemittance solution within the given constraints.
 - Potential for sub-100 pm
- Preserve much of existing facilities.
- Construction early 2020s.
- Prototype lattice evaluated, challenges identified, proposed solutions.