

# **ESRF** | The European Synchrotron



Next Generation X-ray Analyses and the ESRF Upgrade Programme

Low Emittance Workshop INFN-LFN Frascati 17-19 September 2014

Francesco Sette – sette@esrf.fr

#### Major synchrotrons in the world



#### ESRF is the world's first 3rd generation hard X-ray source



#### X-RAY SCIENCE

Upgrades of existing sources and future storage rings for new synchrotron science (ESRF, PETRA III, APS, Spring-8, ...)

New, better science



#### Major new projects in X-ray science 2012



#### X-RAY SCIENCE



#### Low Emittance Rings 2014 Workshop 17 -19 September 2014 INFN - LNF - FRASCATI - ITALY

- MAX-IV, ESRF-II, APS-II, SPRING-8-II (SPRING-6?)
- ➤ DIAMOND-II, ELETTRA-II, ANKA-II, SLS-II, etc.
- > SIRIUS, BAPS, etc.

#### **SCIENCE AT BRIGHTER X-RAY SOURCES**

# ESRF Upgrade Programme: X-ray nano-beams for science

Objective: a new generation of instruments for frontier and applied science in condensed matter, materials, and living matter.

New beam lines and a brighter, and more coherent and stable source







Health & life sciences



Energy research

- Science and technology at the atomic scale
- Biology and time-resolved science
- Soft matter and imaging of biological samples
- Materials and chemistry
- Earth environment and extreme condition science

2007

#### **ESRF UP PHASE II: A NEW STORAGE RING SOURCE**

#### ESRF Upgrade Programme Phase II (2015-2022)



Present ESRF Lattice:  $\varepsilon_x$ = 4 nm



Low Emittance Lattice:  $\varepsilon_x = 0.15$  nm



 $10^{23}$ 

 $10^{22}$ 

 $10^{14}$ 

 $10^{6}$ 

2 m IVUs & CPMUs:U22 Min. Gap 6 mm, K<sub>max</sub>=1.7

U14.5 Min. Gap 4 mm,  $K_{max}$ =1.7 (CPMU)



2 m IVUs & CPMUs:U22 Min. Gap 6 mm, K<sub>max</sub>=1.7



#### **ESRF-II: TRANSVERSE COHERENCE**

2 m IVUs & CPMUs:U22 Min. Gap 6 mm, K<sub>max</sub>=1.7



#### **COHERENT FLUX FOR SHORT COHERENCE LENGTHS (NANO PARTICLES!):**



Pink beam (20 nm long. coh. length) coherent flux x2000 !!

## Today's flux inside the coherent aperture at 9.5 keV:



#### **ESRF UP Phase II**

#### A NEW LOW-HORIZONTAL-EMITTANCE LATTICE

from 4 *nm* to ~0.1 *nm* 

- $\triangleright$  Increased brightness and coherent fraction (x40 ++ on IDs and x60 on BMs)
- Substantial reduction of the total power on beam line optics
- ➤ Power density increase by not more than a factor of ~2 (IDs) and ~6 (BMs)
- Possibility of substantial increase in (coherent) flux using pink beams





#### ESRF Upgrade Programme Phase II (2015-2022)

- New lattice for the storage ring (2015-2020)
- Four new beamlines (2018-2022)

Scientific Instrumentation (2015-2022): New detector programme; IT infrastructure for handling large data volumes





**ESRF** 

DESIGN STUDY

NDE PROGRAMME

#### PREPARING THE UP PHASE II

#### **ESRF** Upgrade Programme Phase II (2015-2022) - Preparation

13 September 1976 1st meeting of a working group on "Synchrotron Radiation" created by the European Science Foundation (ESF)

Chairman: H. Maier-Leibnitz

- 1. December 1977: **BLACK BOOK**
- 2. May 1979: **BLUE BOOK** (Ed. Y. Farge)
- 3. December 1982: YELLOW BOOK (Ed. J. Als-Nielsen)
- 4. October 1984: **GREEN BOOK (**Eds. B. Buras, S. Tazzari)
- 5. February 1987: **RED BOOK** (Foundation Phase Report) submitted to the Council
- 6. October 2007: **PURPLE BOOK** (2009-2019 ESRF Science and Technology Programme)
- Draft **ORANGE BOOK** (ESRF 7. June 2014: **UP Phase II)**



2014



#### **38 YEARS OF ESRF HISTORY**















Complement to the Council Resolution of 17 June 2008 on the Upgrade Programme: APPROVED on 24 June 2014

The ESRF Council
- at its 61<sup>st</sup> meeting launched
the UP PHASE II



#### LAUNCHING THE UP PHASE II

#### **Complement to the Council Resolution of 17 June 2008** on the Upgrade Programme: APPROVED on 24 June 2014

#### > DELIVERABLES:

The second part of the Upgrade Programme ("UP Phase II") shall include, as specified in the ESRF UP Phase II Technical Design Study Report (the "Orange Book"):

- A new hybrid multiple bend achromat lattice for the ESRF storage ring;
- 4 new beamlines;
- Scientific instrumentation for a new detector programme; IT for Large Data Handling

#### > TIMELINE:

The UP Phase II shall be completed by the end of 2022

#### > COST:

The UP Phase II will cost 149.1 M€

#### > ANNUAL CONTRIBUTIONS:

The total annual Members' contributions during the UP Phase II (2015-2022) should be stable and remain constant at the level of 2014 (at 2014 prices)



### **ESRF** Upgrade Programme

X-rays for science in the mesoscopic regime beyond optical imaging – approaching e-microscopy





- enhancing human health
- developing a sustainable economy with new tools
- exploring unknown territories



#### **TODAY'S CHALLENGE**

Understanding (embedded) structures
down to the atomic level
within multiscale structural hierarchies

Phase I of the ESRF Upgrade Programme has prepared many beamlines for this task

with limitations in

- Brightness (~95% loss in nanobeams)
  - Coherence (0.2% at 10 keV)



Structure and Dynamics of Functional Biological Units

From serial crystallography to molecular machines in functional biological cells

Bio-regeneration, Evolutionary Biology, Hierarchical (composite) Materials

Time-resolved bioresponse of organisms to exogenous materials Earth & Planetary Science Novel states of matter

Revealing hidden stories of Nature with a diffractionlimited X-ray Source

> Energy Science Catalysis, Materials Processing

Diffraction-limited sources: opportunities for in-situ studies

New, better science

Nanoscience

and

nanotechnology

Nanotechnology, Information technology, Quantum computing

5D diffraction imaging of electronic devices and nanostructures



#### Interactions between biological systems

#### Opportunities

- · Probing the bioresponse to exogenous materials with ultimate sensitivity and resolution
- Multiscale analysis of heterogeneous materials
- Low-dose in vivo tomography of living organisms

One of the big challenges for our aging societies: Degenerative diseases

Alzheimer's disease, Parkinson's disease

Copper pathology in vulnerable brain regions in Parkinson's disease



Davis et al. 2014, Neurobiology of Aging

| Limitations        | Solution          |
|--------------------|-------------------|
| spatial resolution | higher brightness |
| detection limit    | higher brightness |
| radiation damage   | better detectors  |
| data analysis      | IT and software   |





Membrane-Protein
Serial Micro-Crystallography
using
Synchrotron Radiation
and a
Liquid Cubic Phase Injector

#### MICRO-BEAM LCP-INJECTOR SETUP AT ID13



micro-beam 13 keV, 8x10<sup>11</sup> ph/sec 3x2 μm<sup>2</sup> (FWHM HxV)



#### liquid cubic phase (LCP) injector in operation

- pressurized via HPLC pump
- helium mantle stream
- LCP-jet with 50 μm diameter
- velocity of LCP-jet: 100 μm/sec

Weierstall et al.: Nature Communications (2014) 5, 3309





#### **BACTERIORHODOPSIN MICRO-CRYSTAL FLY-BY IN 3 SUBSEQUENT FRAMES**



overhead: 75 ms

EIGER 4M (3 μs overhead)

Average travel per 25 ms exposure:  $2.5 \mu m$  Crystal detected in 3 subsequent frames >> crystal size ~ 30  $\mu m$  (preliminary evaluation: Typical hit rate in the percent range limited by overhead and crystal concentration)

foreseen for Spring 2015 at ID13: EIGER 4M pixel array detector for quasi-continuous exposure @ 750 Hz 80-90 % of the sample could be used ESRF storage ring upgrade (white paper) >> µs exposure possible



#### BACTERIORHODOPSIN STRUCTURE REFINEMENT FROM SERIAL DATA



Preliminary data analysis and structure refinement of Bacteriorhodopsin membrane protein test crystals from synchrotron LCP-jet serial data at ID13 (electron density map current resolution 2.7 Å)



**Acknowledgement:** 

R. Neutze (Gothenburg unniv., S): main proposer and and coordinator of Marie-Curie ITN "NanoMem" Moraes I. (Imperial college, diamond light source, UK): scientific coordination of MI-1178 beamtime Weierstall et al. (Arizona State University, USA): LCP-injector Schertler G., Standfuss J., et al. (PSI, CH): structure refinement, BR-sample preparation Chapman H., White T., et al (Desy/Petra/C-FEL, D): serial crystallography data reduction



#### Structural and functional biology: New opportunities at cellular and molecular levels

#### Opportunities

- Ab initio crystal structure determination of large protein complexes
- · Room temperature serial protein crystallography of microcrystals
- · High resolution imaging of cells and probing protein structural dynamics during physiological activity



| Limitations        | Solution         |
|--------------------|------------------|
| spatial resolution | coherence        |
| radiation damage   | better detectors |
| data analysis      | IT and software  |



#### In situ materials chemistry

#### Opportunities

- Materials chemistry of devices to solve grand challenges in clean energy provision and transport
- A 'chemically resolved X-ray vision' on working catalysts and devices for a green energy economy
- Understanding and optimising complex devices on realistic time scales



new materials: characterisation



Ni-Co-Ma compounds for electrodes



LiFePO₄ cathode material

device development: in-situ studies



| Limitations        | Solution        |
|--------------------|-----------------|
| spatial resolution | brightness      |
| time resolution    | brightness      |
| penetration        | high energy     |
| data analysis      | IT and software |

#### Nanomaterials for technology

#### Opportunities

- In situ imaging of strain and chemical composition in biocompatible sensors
- Device imaging and failure analysis under operating conditions: from solar cells to quantum computers
- · Three dimensional imaging of nano-electronic building blocks







back-end of line integration of non volatile RRAM into a SiGe BiCMOS chip technology for system on chip solutions



quantum computing device Evans et al. (2012) Advanced Materials

|                                                                      | ,            | K-ray    | diffraction micrograph                            |
|----------------------------------------------------------------------|--------------|----------|---------------------------------------------------|
| 5 nm Si cap                                                          | nits)        |          | <b>第一张 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</b> |
| 70 nm Si <sub>0.7</sub> Ge <sub>0.3</sub>                            | "i           |          | <b>建一张发生工作。</b>                                   |
| P modulation dipin                                                   | (arb. t      | <b>1</b> |                                                   |
| 300 nm Si <sub>0.7</sub> Ge <sub>0.3</sub>                           | nsity        | 0.9      |                                                   |
| Si <sub>1-x</sub> Ge <sub>x</sub> graded to x=0.3, relaxed, polished | d inter      | 0.8      |                                                   |
| Si (001)                                                             | ,<br>tegrate |          | 500 nm                                            |

| Limitations        | Solution        |
|--------------------|-----------------|
| spatial resolution | coherence       |
| strain resolution  | coherence       |
| time resolution    | brightness      |
| data analysis      | IT and software |



#### Matter at extreme pressures and temperatures

#### Opportunities

- Probing structural complexity and its relation to, e.g. superconductivity and quantum phenomena
- · Imaging materials complexity in the TPa regime at the nanoscale
- Understanding the structure and dynamics of Earth's and Exo-planets deep interiors



Creating thermodynamic conditions that exist only in a very small volume and/or for a very short time

| Limitations     | Solution        |
|-----------------|-----------------|
| beam size       | brightness      |
| time resolution | brightness      |
| data analysis   | IT and software |



#### **Experimental Challenges**

#### Managing Radiation Damage:

- ➤ New Detector Technologies
- Smart automation and data collection strategies
- Data management: flow control, collection, storage, analyses

#### **Enabling Technologies:**

- > nano-mechanics, -positioning, -optics, etc.
- Software, software and software









# ESRF: preparing the next 20 years of excellence in synchrotron science

- A new page in X-ray science:
  - intense stable coherent X-ray nano-beams to unveil the mysteries of materials and living matter in the lengthscale gap between optical and electron microscopies: 1-1000 nanometers
- An ambitious Upgrade Programme delivering by 2022:
  - a new low-emittance storage ring for a qualitatively brighter source
  - a new portfolio of revolutionary instruments
  - an extraordinary scientific instrumentation programme
- Continue to serve the scientific community of the Partner Countries on the analytical characterization of materials and living matter:
  - new generations of efficient, sustainable materials
  - new pharmaceutical products and medical treatments
  - new understanding of the world surrounding us

The European Synchrotron





# ESRF: preparing the next 20 years of excellence in synchrotron science

> A new page in X-ray science:

intense – stable – coherent X-ray nano-beams to unveil the mysteries of materials and living matter in the lengthscale gap

# An exciting context for the next 15-20 years!!



an extraorantary concludes moduline matter programme

- Continue to serve the scientific community of the Partner Countries on the analytical characterization of materials and living matter:
  - new generations of efficient, sustainable materials
  - new pharmaceutical products and medical treatments
  - new understanding of the world surrounding us



