First Collective Effects Measurements in NSLS-II

A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep. 17-19, 2014

Low Emittance Rings 2014 Workshop (LOWεRING 2014)

Outline

- Phase 1 (25mA / PETRA-III) and Phase 2 (50mA / CESR-B) Commissioning w/o ID's
- Local Beam Impedance Measurements
- First Collective Effects and Beam Impedance Measurements
- Summary

NSLS-II Parameters

NSLS-II Machine Concept

- Superconducting RF
- ✤ Top-Off Operation
- ♦ DBA30 Lattice
- Ultra-Low Emittance (<1 nm)</p>
- ✤ Damping Wigglers
- ✤ Large Dipole Bend Radius (25 m)
- Provision for IR Source
 - Three-pole wiggler x-ray sources

Energy Circumference Number of Periods Length Long Straights Emittance (h,v) Momentum Compaction Dipole Bend Radius Energy Loss per Turn

3.0 GeV 792 m 30DBA 6.6 & 9.3m <1nm, 0.008nm .00037 25m <2MeV

Energy Spread RF Frequency Harmonic Number RF Bucket Height RMS Bunch Length Average Current Current per Bunch Charge per Bunch 0.094% 500 MHz 1320 3% 15ps 500mA 0.5mA

1.2nC

NATIONAL LABORA

BROOKHAVEN SCIENCE ASSOCIATES

U.S. DEPARTMENT OF ENERGY

Office of Science Low Emittance Rings 2014 Workshop

RF Straight Section (PETRA-III, Cell24)

Longitudinal Coupled-Bunch Instability

5

Measured CB Instability driven by PETRA-III HOM's

Frequency MHz	Bunch Mode	Average Current mA	Cavity Temperature C°
1374	991	10	38.4
728	603	11.64	39.2

Calculated PETRA-III Higher-Oder Longitudinal Modes

Shunt Impedance, <i>R_{sh,}</i>	Frequency, <i>f</i> , MHz	Quality Factor, Q_0	
0.6	1374	36000	
3	728	33600	

Growth rates for 1320 bunches uniformly filling the ring:

$$\frac{1}{\tau_{\mu}} = -\frac{I_0\eta}{4\pi E_0\nu_s} \sum_{p=-\infty}^{+\infty} (pM\omega_0 + \mu\omega_0 + \omega_s)e^{-(pM\omega_0 + \mu\omega_0 + \omega_s)^2\sigma^2} ReZ_{||}(pM\omega_0 + \mu\omega_0 + \omega_s)$$

Worst Case Scenario

Matching To Measured Growth Time Frequency Set to : $f_r = 727.964 MHz$ Growth Time: $\tau_{gr} = 6.7$ ms ReZ_{||}(pMω₀+μω₀+ω_s) p=1, μ=603 ReZ_{||} 2

NEG Coated DW Chamber (Cell 8)

Odd Cell (Standard Arc)

Transverse Mode Coupling Instability

• Average Transverse Coherent Tune Shift (Vanishing Chromaticity)

$$\left(\frac{\Delta v_y}{v_s}\right)^{av} = \frac{e^2 N_e \beta_y}{4\pi \gamma m c^2 v_s} k_y = 0.7$$

- Vertical Kick Factor (Geometric) $k_y = \frac{c}{\pi} \int_0^\infty dk \, Im Z_y(k) e^{-k^2 \sigma^2}$
- Broad-Band Resonator

$$k_y^{BBR} = \frac{c}{2\sqrt{\pi}\sigma_s} \frac{R}{Q} \qquad (k_r \sigma_s > 1)$$

Resistive Wall (Normal Conducting)

$$k_{y}^{rw} = 0.58 \frac{cZ_{0}}{4\pi} \frac{2s_{0}L}{b^{4}} \sqrt{\frac{s_{0}}{\sigma_{s}}}$$
$$s_{0} = \left(\frac{2b^{2}}{Z_{0}} \sigma_{cond}\right)^{1/3}$$

U.S. DEPARTMENT OF Office Scie

Office of Science

A. Blednykh et al., "Transverse Impedance Of Small-Gap ..., EPAC06 S. Krinsky, "Simulation of Transverse Instabilities ..., BNL-75019-2005-IR Low Emittance Rings 2014 Workshop

20 ID's with 2.5mm radius 70m of Cu & $\beta_y = 3m$ $k_y \beta_y = 49kV/pC$ $I_{th} = 1.8mA$ per bunch

Phase 1, Vertical Plane (Vanishing Chrom.)

111= 0.54 mA

112 = 0.58 mA

113= 0.62 mA

114= 0.66 mA

115= 0.68 mA R

0.65 0.7 0.75 0.8

y

Vertical Tune and Spectra of BPM41 vertical TBT data

Accumulated Single Bunch Current: $I_0 = 0.7 \text{mA}$

Measured Vertical Kick Factor

$$k_{y} = \frac{\Delta v_{y}}{\Delta I_{0}} \frac{2E_{0}\omega_{0}}{\beta_{y}} = 14 \ kV/pC/m$$

Energy, $E_{0} = 3GeV$
RF Voltage, $V_{RF} = 1.86MV$
Bunch Length, $\sigma_{s} = 3.3$ mm
Beta Function, $\beta_{y} = 7.7$ m
Rev. Frequency, $\omega_{0} = 2\pi \times 378.6$ kHz

A. Blednykh et al., "NSLS-II Commissioning with 500MHz" IPAC14

BRAA NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Resistive Wall Evaluation (σ_s =3mm)

	Length, mm	$\sum k_{loss},$ V/pC	$\sum oldsymbol{k}_{\mathcal{Y}},$ kV/pC/m	$\sum k_y \beta_y$, kV/pC
Long Straight Sections	129839.18	2.2 (3.3)	0.52 (1.2)	3 (6.7)
Short Straight Sections	89256.6	1.3	0.15	1.1
Even Arcs	286465.76	3.5	0.41	7.1
Odd Arcs	286381.14	3.5	0.4	7.2
Total:	791942.7	10.5 (11.6)	1.48 (2.15)	18.4 (22.1)

• Loss Factor

$$k_{loss} = 1.2 \frac{cZ_0}{4\pi} \frac{L}{2\pi b^2} \left(\frac{s_0}{\sigma_s}\right)^{3/2}$$

• Kick Factor

$$k_y = 0.58 \frac{cZ_0}{4\pi} \frac{2s_0 L}{b^4} \sqrt{\frac{s_0}{\sigma_s}}$$

NSLS-II Circumference: 791.9589 m

Low Emittance Rings 2014 Workshop

Vertical Plane (Positive Chromaticity)

Synchrotron Light Monitor

- Synchrotron Tune $v_s = \sqrt{-\frac{h\eta}{2\pi\beta_s^2 E_0}} V_{RF} cos\phi_s$
- Bunch Length $\sigma_{s} = \frac{\sqrt{2\pi}c}{\omega_{0}} \sqrt{\frac{-\eta E_{0}}{heV_{RF}cos\phi_{s}}} \frac{\sigma_{\varepsilon}}{E_{0}}$

Low Emittance Rings 2014 Workshop

Horizontal Plane (Single Bunch)

Horizontal Tune vs. Current for high Resolution FFT Method

Horizontal Tune vs. Current for Interpolated FFT Method for all 180 BPMs **Y. Hidaka**

Broad-Band Resonator G. Bassi $\omega_r = 2\pi \times 30 GHz$

Q = 1 $R_{sh,x} = 0.4M\Omega/m$

 $\xi_{x,y} = +1/+1$, BPM 6 ($I_0 = 0.85 \text{ mA}$).

Absolute value of the measured horizontal growth rate as a function of current at $\xi_{x,y} = +1/+1$ and $\xi_{x,y} = +2/+2$ with the fitted slope.

LABORA

BROOKHAVEN SCIENCE ASSOCIATES

Low Emittance Rings 2014 Workshop

Phase 2, Achieved a Stored Current of 50 mA

Screenshot of the CSS-Panels (BLW C08, C18 & Septum)

Low Emittance Rings 2014 Workshop

13

Surface Temperature Increases about 0.3 degrees Celsius

Office of

Science

U.S. DEPARTMENT OF

BROOKHAVEN SCIENCE ASSOCIATES

Summary

- NSLS-II storage ring commissioning continue
- Phase 3, ID's commissioning in under way
- Repeat local impedance measurements with modified local bump model for 4 straight sections occupied with NEG coated chambers, 3DW's and 1 EPU, and for several variable-gap IVU's
- Orbit Response Matrix Fit Method for Local Transverse Impedance Measurements is going to be applied
- Single bunch (0.5 mA) and average current (500 mA) goals are achievable

Acknowledgments

• NSLS-II/BNL/US:

B. Kosciuk, C. Hetzel, H.-C. Hseuh, B. Bacha, W. Cheng, F. Willeke, T. Shaftan, G. Bassi, G. Wang, S. Ozaki, B. Podobedov, Y. Li, L.-H. Yu, Y. Hidaka, J. Choi, L. Yang

• DIAMOND/UK V. Smaluk

Low Emittance Rings 2014 Workshop

15

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Back-Up Slides

Low Emittance Rings 2014 Workshop

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

RF Spring – Aperture Limitation

Phase 1 (Cell10)

Difficulties in Orbit Correction

• After Phase 1, 25mA (Cell08)

The fan burned through the spring

The assembly method needs to revised !

Low Emittance Rings 2014 Workshop

Commissioning Phase 1: Longitudinal Coupled-Bunch Instability Analysis

Transverse Coupled-Bunch Stability Analysis (I_{av}=25mA)

(Analysis performed prior to the

Transversely **unstable** at zero chromaticity (ξ =0): growth time $\tau_{gr} = 0.74ms \ll \tau_{\chi} = 54ms$ **Cure:** 1) Run at positive chromaticity to provide damping via slow head tail effect 2) Frequency shift ($\Delta\Omega$) of HOM's

Phase 2, Vertical TbT Data (+2/+2, V_{RF}=1.2MV)

