

Studies of collective effects in the MAX IV 3 GeV ring

Galina Skripka

Francis Cullinan Marit Klein Ryutaro Nagaoka Pedro F. Tavares

Outline

- Introduction to MAX IV 3 GeV ring
- MAX IV project status
- •Scope of the project
- •Latest results of studies
 - transverse single bunch
 - transverse multi bunch
 - resistive wall of low-gap ID chambers
- Thresholds overview
- Harmonic cavity and head-tail damping preliminary studies
- Outlook

LER workshop, September 2014

MAX IV 3 GeV storage ring

Energy	E ₀	3.0	GeV
Current	I	500	$\mathbf{m}\mathbf{A}$
Circumference	L	528.0	m
Harmonic number	h	176	
m RMS bunch length w/o HC	$\sigma_{ au}$	40	\mathbf{ps}
RMS bunch length at 500 mA	$\sigma_{ au}$	195	\mathbf{ps}
Peak rf-voltage w/o IDs	V _{rf}	1.02	MV
rf-frequency	f_{rf}	99.931	MHz
Energy loss per turn w/o IDs	Urad	360	keV
Higher harmonic of HC	\mathbf{n}	3	
Quality factor of HC	Q_f	21600	
HC detuning	Δf	48.1227	kHz
Total shunt impedance HC	R_s	2.36441	$M\Omega$

- Multibend achromat lattice
- •Ultra-low hor. emittance: 0.2 0.4 nm rad
- Round beam pipe, small radius: 11 mm
- High beam intensity: 500 mA
- Passive harmonic cavities:
 - relax the Touschek life-time and intra-beam scattering
 - Fight collective beam instabilities

SYNCHROTRON

MAX IV project status

MAX IV

- •Beam commissioning with the thermionic gun has started:
 - transport through first three linac sections up to first bunch compressor
 - energy 280 MeV
- Delivery of main components of the storage ring is on track
- 3 GeV ring:
 - ongoing installation of concrete girders, cabling and cooling infrastructure

1.5 GeV ring

3 GeV

ring

- Installation of magnets/ chambers planned in October 2014
- Commissioning is planned on July/August 2015

Scope of studies

• Building the machine impedance model

- humerical calculations using GdfidL
- •Determination of single- and multi-bunch instability thresholds given the impact of
 - > geometric impedance
 - > resistive wall impedance
 - passive HC
- •The effect of low gap insertion device(ID) chambers on the thresholds considering
 - resistive wall impedance
 - geometric impedance

• Study of harmonic cavity impact on the internal bunch motion

Particle tracking: *mbtrack*

6D macro-particle tracking code:

- Internal motion and micro-structures
- Quantum excitation and radiation damping
- Arbitrary filling pattern
- •Single-(Intra-) bunch effects:
 - geometric ring impedance
 - resistive wall impedance
 - HC(passive or ideal potential)
- Multi-(Inter-) bunch effects:
 - resistive wall impedance(RW)
 - HC(passive or ideal potential)

Transverse single-bunch

HC has no effect at zero chromaticity

- •Instabilities are damped by bunch lengthening and tune spread
 - Lengthening from longitudinal impedance improves the situation
 - HC enhances the effect
- •Same trend in horizontal plane but more relaxed

Multi-bunch: resistive wall

For RW *mbtrack* uses the eff. radius b_{eff}

 With passive HC the threshold is at ~40 mA cavity tuning for optimal bunch lengthening is needed

- Further investigation with ideal cavity potential(cross check with vertical emittance ′ 10¹⁵ passive HC)
 - geometric impedance improves the threshold

suggests the head-tail damping

•RW scales as $I \cdot b_{eff}^3$ 860 880 > I_{th} with 5 planned IDs(ξ =1): 380 mA \succ I_{th} with 5 planned IDs(ξ =1.2): >500 mA $\xi > \xi_{design}$ allows to achieve design current Optics design has been made to provide ξ up to +4 ξ = 1.0, Ideal potential, no IDs

960

940

ring current (mA)

design current: 500 mA

980 1000 1020

100

10

no geom. imp. full geom. imp.

900

920

Threshold currents(mA) in MAX IV 3 GeV ring considering different effects

effect	6	Z_{geom}		$Z_{geom} + \mathrm{RW}$		$\mid \mathrm{Z}_{geom} + \mathrm{RW}_{5IDs}$
plane	5	HC off	HC on	HC off	HC on	HC on
Longitudinal	-	620	970	-	_	-
	0.0	2010	2020	120	140	-
Horizontal	1.0	>2050	17100	150	3500	-
	1.2	5040	21900	-	-	-
	0.0	920	710	40	40	-
Vertical	1.0	2200	10400	-	950	380
*in mA	1.2	3170	15100	50	1250	540

Harmonic cavity is crucial for successful operation!

LER workshop, September 2014

Geometric impedance of low gap ID chambers

Impedance processing: • Numerically obtained using GdfidL (Thomas Günzel(ALBA), David Olsson(MAX IV laboratory))

•Fitted to as series of resonators (broad- or narrow-band) with additional purely resistive and inductive components

Impedance model of ID chambers:Longitudinal is obtained assuming all straight sections occupied

- increase of inductive component
- •Transverse in progress...

tracking with new impedance model is next step

SYNCHROTRON

Head-tail modes influenced by HC

Sum of macroparticle offsets/m

m=1 mode is excited in initial distribution

no impedance effects

•Evolution w/o HC

ξ = 1.2: m=1
 with CM offset

• Evolution with HC

ξ = 0: HC induced amplitude
 dependent tune shift
 destroys coherent motion

Head-tail modes influenced by HC

ξ = 0, HC off

 $\xi = 0$, HC on

SYNCHROTRON

- Tune shift smears out the coherence
- What is the effect of the chromaticity and HC together?
 To be studied further...

LER workshop, September 2014

Conclusion and Outlook

- •MAX IV instability thresholds without ID chambers determined
 - Single-bunch: at design chromaticity $\xi = 1$ well above the operation current
 - Multi-bunch: instability sets in at low currents leading to the need of precise cavity tuning
 - Provided optimal lengthening from HC and ξ = 1 threshold is above the operating current
- •MAX IV instability thresholds with ID chambers RW effect
 - RW from low-gap chambers requires slight increase of chromaticity to reach the design current
- Evaluation of low-gap ID chambers impedance launched
 - tracking to follow
- •Nature of instabilities and HC role is under thorough investigation

Thank you