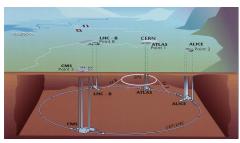
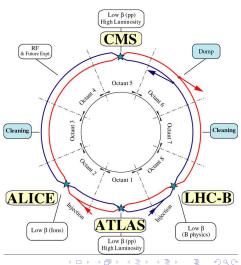
Hadron spectroscopy and exotic states at LHCb Results and prospects

A. Augusto Alves Jr.

INFN sezione di Roma and Università di Roma "Sapienza" aalvesju@cern.ch

Seminario del Dipartimento di Fisica della Università di Roma "Sapienza" Roma, Italia, 09 Giugno 2014

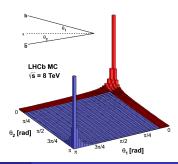

Outline


- The LHC accelerator and its detectors
- Exotic states
- Studies on X(3872)
- Search for X(4140) and X(4274)
- **5** Results on $Z(4430)^+$
- O Light meson spectroscopy
- Conclusions

The LHC accelerator and its detectors

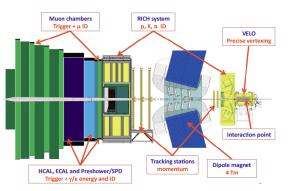
The LHC is designed to collide two high luminosity and high energy beams of protons or heavy ions.

- Two general proposal high luminosity experiments: CMS and ATLAS
- One low luminosity experiment, dedicated to flavour physics experiment: LHCb
- Heavy-ion experiment: ALICE


The LHC environment

During most of 2012 run, LHC collided protons at 8 $\rm TeV$ with an average instantaneous luminosity of $4\times10^{32}cm^{-2}s^{-1}$ and 20 $\rm MHz$ of bunch crossing. In these conditions:

- Inelastic cross section $\sim 60\,\mathrm{mb}$
- $\sigma(\mathrm{pp} o \mathrm{b} \overline{\mathrm{b}} X) = (284 \pm 20 (\mathrm{stat}) \pm 49 (\mathrm{syst}))~\mu\mathrm{b}$ [PLB 694, 209]
- ullet \longrightarrow $\sim 10^6~{
 m B\overline{B}}$ produced per second
- ullet $\sigma(\mathrm{pp} o \mathrm{c} \overline{\mathrm{c}} X)$ is about 20 times higher. [Nucl.Phys. B871 (2013) 1-20]


At the LHC energy, the $b\overline{b}$ pairs are produced preferentially at forward (backward) directions.

- ullet 4 π acceptance design is not optimal
- Optimal solution is a forward detector: LHCb

The LHCb detector

LHCb experiment was designed to perform high precision flavor physics measurements at the LHC.

- Single-arm design. Covering the range $2 < \eta < 5$, LHCb can exploit the dominant heavy flavour production mechanism at the LHC and detects $\sim 40\%$ of the $b\overline{b}$ produced in foward region.
- Good particle identification. Excellent muon identification and good separation of π , K and p over (2 100) GeV.
- Good vertexing and tracking. Precise primary and secondary vertex reconstruction. Excellent momentum, IP and proper time resolution.
- **Dataset.** 1 + 2 fb⁻¹ aquired in 2011 + 2012 runs

Quarkonia status

In QCD-motivated models, quarkonia states are basically described as $\,q\overline{q}\,$ pairs bound by a short-distance potential approximately Coulombic (single-gluon exchange) plus a linearly increasing confining potential at large separations.

- All charmonium states bellow the $D\bar{D}$ mass threshold have been observed.
- Charmonium states above the $D\overline{D}$ or $D\overline{D}^*$ mass threshold can decay into $D\overline{D}$ and $D\overline{D}^*$ final states.
- Many predicted states still not observed.
- Similar situation in the Beauty sector.

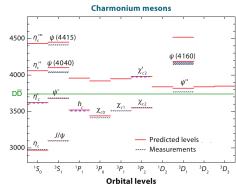


Figure from [Annu.Rev.Nucl. Part. Sci. 2008. 58:51-73]

XYZ states

Many new states have been observed at Charm-, B-factories and Tevatron

- Masses lying on the limits of the quarkonia spectrum
- Observed many different production mechanisms: ISR, e^+e^- , $\gamma\gamma$ and B decays.
- The measured masses does not correspond to the predicted values for conventional quarkonia.
- Properties does not fit very well to the quarkonia picture.

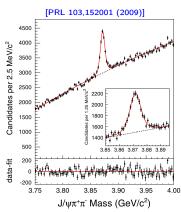
Many theoretical interpretations in discussion:

- conventional quarkonia; tetra-quarks states;
- meson-molecules:
- hybrid mesons:
- threshold effects:

The table should be updated to include some new states: Z_{b}^{+} , $Z_{c}(3900)^{+}$...

State	$m \; (\mathrm{MeV})$	$\Gamma~(\mathrm{MeV})$	J^{PC}	Process (mode)
X(3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \rightarrow K(\pi^+\pi^-J/\psi)$
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) +$
				$B \rightarrow K(\omega J/\psi)$ $B \rightarrow K(D^{*0}\bar{D^0})$
				$B \rightarrow K(D^-D^-)$ $B \rightarrow K(\gamma J/\psi)$
				$B \rightarrow K(\gamma \psi(2S))$
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$
				$e^+e^-\to e^+e^-(\omega J/\psi)$
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$
				$e^+e^- \rightarrow J/\psi \; ()$
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \rightarrow \gamma(D\bar{D})$
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^-\to\gamma(\pi^+\pi^-J/\psi)$
$Z_1(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	?	$B \rightarrow K(\pi^{+}\chi_{c1}(1P))$
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	?*+	$B \to K(\phi J/\psi)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- o J/\psi(D\bar{D}^*)$
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \rightarrow K(\pi^+\chi_{c1}(1P))$
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^-\to\gamma(\pi^+\pi^-J/\psi)$
				$e^+e^- \rightarrow (\pi^+\pi^-J/\psi)$
				$e^+e^- \rightarrow (\pi^0\pi^0J/\psi)$
Y(4274)	$4274.4^{+8.4}_{-6.7}$	32^{+22}_{-15}	??+	$B \rightarrow K(\phi J/\psi)$
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^-\to e^+e^-(\phi J/\psi)$
Y(4360)	4353 ± 11	$96 {\pm} 42$	1	$e^+e^- \to \gamma (\pi^+\pi^-\psi(2S)$
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \rightarrow K(\pi^+\psi(2S))$
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- o \gamma(\Lambda_c^+\Lambda_c^-)$
Y(4660)	$4664 {\pm} 12$	$48 {\pm} 15$	1	$e^+e^- \to \gamma (\pi^+\pi^-\psi(2S)$
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$

[Eur.Phys.J.C71:1534.2011]


X(3872)

The X(3872) exotic-meson was discovered in 2003 by the Belle collaboration in $B \to KX(3872)$ with $X(3872) \to J/\psi \pi^+\pi^-$.

- Its existence was immediately confirmed by BaBar,CDF, DØ collaborations.
- Quantum numbers previously constrained to 1^{++} or 2^{-+} . It were just measured by LHCb as 1^{++} .
- Clear signature on the X(3872) \to J/ $\psi\pi^+\pi^-$ mode. $\pi^+\pi^-$ mass spectrum well studied.
- Mass known to 0.2 MeV and width < 1.2 MeV.

The nature of the X(3872) remains uncertain:

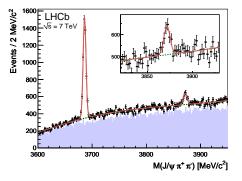
- ullet Conventional charmonium $\chi_{c1}(2^3P_1)$.(very unlikely)
- $\bullet \ \ {\sf Mesonic molecular state} : \ D^{*0} \bar{D}^0 \ \ {\sf bound state}.$
- Tetraquark (diquark-anti-diquark).

X(3872) production studies at LHCb

At LHCb, the X(3872) can be studied using:

- Prompt candidates: higher statistics but large combinatorial background.
- Candidates from B decays: lower statistics but more clear samples
- Both kinds of candidates (inclusive selection)

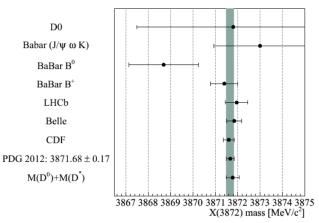
X(3872) production studies at LHCb were performed:


- Measuring the product of production cross-section multiplied by branching ratio to $X(3872) \to J/\psi \pi^+\pi^-$
- Assuming X(3872) as a 1^{++} state
- Performing an inclusive selection of $X(3872) o J/\psi \, \pi^+\pi^-$ final state
- \bullet Fiducial range: 5 < $p_{\rm T}$ < 20 $\, {\rm GeV}$ and 2.5 < y < 4.5
- Efficiency estimated from Monte Carlo

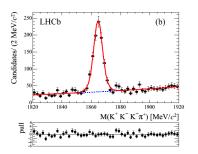
X(3872) production studies at LHCb

[Eur. Phys. J. C. 72 (2012) 1972]

Analysis performed on data sample with integrated luminosity of 34.7 pb⁻¹ collected by the LHCb experiment in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ in 2010.

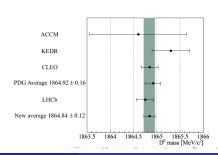

$$\begin{split} \sigma(\mathrm{pp} \to \mathrm{X}(3872) + \cdots) \times \mathcal{B}(\mathrm{X}(3872) \to \mathrm{J}/\!\psi \, \pi^+ \pi^-) &= 5.4 \pm 1.3 \mathrm{(stat)} \pm 0.8 \mathrm{(syst)} \, \mathrm{nb} \\ \mathrm{M}(\mathrm{X}(3872)) &= 3871.95 \pm 0.48 \mathrm{(stat)} \pm 0.12 \mathrm{(syst)} \, \mathrm{MeV}/c^2 \end{split}$$

- $585 \pm 74~{
 m X}(3872)$ signal candidates
- Momentum scale calibration using $J/\psi \to \mu^+\mu^-$.
- X(3872) peak fitted using a Voigt function with fixed width.
- Background studied from wrong-sign pions combinations and modeled by exponential function.
- Uncertainty dominated by statistics. It will improve with 2011 dataset


Status of X(3872) mass

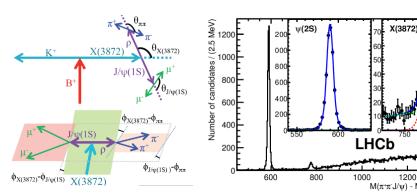
- World average and $D^0D^{\overline{0}}*$ -threshold are indistinguishable.
- Mass is a critical parameter for the $D^0D^{\bar{0}}*$ -bound state hypotesis.
- Very low binding energy: $E_{bind} = 0.16 \pm 0.26 \text{ MeV}/c^2$

Precision D⁰ mass measurement at LHCb


JHEP 1306 (2013) 065

- D⁰ mass measurement using D produced in semileptonic B decays
- Using $\mathrm{D^0} o \mathrm{K^+K^-K^+\pi^-}$
- ullet 846 \pm 36 events, low Q, low systematics

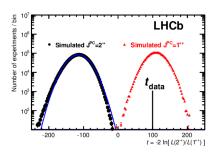
$$\text{M(}\,\mathrm{D}^{0}\,\text{)}\!=\,1864.75\pm0.15(\mathrm{stat})\pm0.11(\mathrm{syst})\,\mathrm{MeV}/c^{2}$$


- This result reinforces that if X(3872) is a $D^0\bar{D^0}^*$ bound-state, it is looselly bound.
- Consistent with arxiv:1212.4191:
 M(D⁰) = 1864.851 ± 0.020(stat)

X(3872) quantum numbers determination

Phys. Rev. Lett. 110, 222001 (2013)

- Using the 1.0 fb⁻¹ dataset recorded by LHCb in 2011
- 313 \pm 26 B⁺ \to K⁺X(3872) with X(3872) \to J/ $\psi\pi^+\pi^-$.
- $5642 \pm 76 \text{ B}^+ \to \text{K}^+ \psi(2S) \text{ with } \psi(2S) \to \text{J}/\psi \pi^+ \pi^-.$
- ullet 5D analysis: all angular correlations used to measure X(3872) J^{PC}



1200

X(3872) quantum numbers determination

Phys. Rev. Lett. 110, 222001 (2013)

- Two X(3872) J^{PC} configurations are considered: 1^{++} and 2^{-+} :
- Likelihood-ratio test, to discriminate between the assignments;
- Compare the results to simulated experiments;
- Data favour the 1^{++} over the 2^{-+} hypothesis at 8.4σ ;

 $|\cos\theta_{\pi\pi}| > 0.6$ 10

Number of candidates / 0.4

all candidates

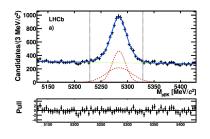
Simulated JPC=1++

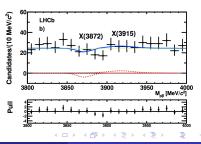
Simulated JPC=2-

This result favours the interpretations of X(3872) as an exotic

June 9, 2014

-0.5

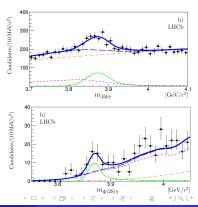

0.5 cosθ.


LHCb

Search for X(3872) and X(3915) in $\mathsf{B}^+ \to \mathsf{K}^+ \mathrm{p} \overline{\mathrm{p}}$

Eur.Phys.J. C73 (2013) 2462

- Search for $B \to KX(3872)$ with $X(3872) \to p\overline{p}$;
- 6951 ± 176 candidates of $B^+ \to K^+ p \overline{p}$
- $-9 \pm 8 {
 m (stat)} \pm 2 {
 m (syst)}$ candidates of ${
 m X(3872)}
 ightarrow {
 m p} \overline{
 m p}$
- $13 \pm 17 (\mathrm{stat}) \pm 5 (\mathrm{syst})$ candidates of $\mathrm{X}(3915) \to \mathrm{p}\overline{\mathrm{p}}$
- $\bullet \ \ \frac{\mathcal{B}(\mathsf{B}^+ \to \mathsf{K}^+ \mathrm{X}(3872)) \times \mathcal{B}(\mathrm{X}(3872) \to \mathrm{p}\overline{\mathrm{p}})}{\mathcal{B}(\mathsf{B}^+ \to \mathsf{K}^+ \mathrm{J}/\psi) \times \mathcal{B}(\mathrm{J}/\psi \to \mathrm{p}\overline{\mathrm{p}})} < 0.008 \ \text{@} \ 95\% \ \textit{CL}$
- $\bullet \ \ \frac{\mathcal{B}(B^+ \to K^+ X(3872)) \times \mathcal{B}(X(3915) \to \mathrm{p}\overline{\mathrm{p}})}{\mathcal{B}(B^+ \to K^+ J/\psi) \times \mathcal{B}(J/\psi \to \mathrm{p}\overline{\mathrm{p}})} < 0.032 \ @\ 95\% \ \textit{CL}$

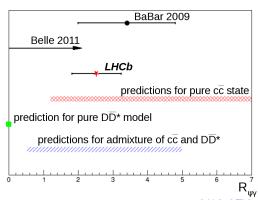

Evidence of $X(3872) \rightarrow \psi(2S)\gamma$

arXiv:1404.0275

Radiative decays of the X(3872) provide a valuable opportunity to understand its nature.

- The X(3872) C-parity has been determined studying the $X(3872) \rightarrow \gamma J/\psi$ decay.
- $R_{\psi\gamma} = \frac{\mathcal{B}(\mathrm{X}(3872) \to \psi(2S)\gamma)}{\mathcal{B}(\mathrm{X}(3872) \to \mathrm{J}/\psi\gamma)}$ can give information about the internal structure of $\mathrm{X}(3872)$.
- Analysis performed using 3 fb⁻¹ collected in 2011 and 2012.
- Observed 4.4 σ evidence of $X(3872) \to \psi(2S)\gamma$ in $B^+ \to K^+X(3872)$ decays.

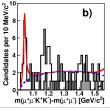
Parameter	Decay mode		
rarameter	$X(3872) \rightarrow J/\psi \gamma$	$X(3872) \rightarrow \psi(2S)\gamma$	
$m_{\rm B^+}$ [MeV/ c^2]	5277.7 ± 0.8	5281.9 ± 2.4	
$m_{\rm X(3872)} \ [{\rm MeV}/c^2]$	3873.4 ± 3.4	3869.5 ± 3.4	
N_{ψ}	591 ± 48	36.4 ± 9.0	

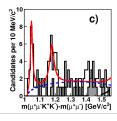


Evidence of $X(3872) \rightarrow \psi(2S)\gamma$

arXiv:1404.0275

 $R_{\psi\gamma} = \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$

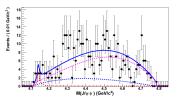

• These results disfavours $D^{*0}\bar{D}^{0}$ molecule hypothesis



The X(4140) and X(4274) candidates

Two exotic resonance candidates observed by CDF in $B^\pm \to J/\psi\,\varphi K^\pm$ decays and decaying into $J/\psi\,\varphi\,.$

[Ref. Phys.Rev.Lett. 102.242002, arXiv:1101.6058].

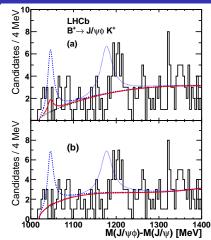

- 115 \pm 12 candidates of B $^{\pm} \to J/\psi \, \varphi K^{\pm}$
- X(4140) candidate with $M_{\rm X(4140)}=4143.4^{+2.9}_{-3.0}\pm0.6~{
 m MeV}/c^2$, $\Gamma_{\rm X(4140)}=15.3^{+10.4}_{-6.1}\pm2.5~{
 m MeV}/c^2$, with yield of 19 ± 6 and statistical significance of 5.0σ .
- Maybe a second state: $M_{\rm X(4274)} = 4274.4^{+8.4}_{-6.4} \pm 1.9 \, {\rm MeV}/c^2$, $\Gamma_{\rm X(4274)} = 32.3^{+21.9}_{-15.3} \pm 7.6 \, {\rm MeV}/c^2$, with yield of 22 ± 8 and statistical significance of 3.1σ .
- CDF results imply:

$$\mathcal{B}(\mathsf{B}^+ \to \mathrm{X}(4140)\mathsf{K}^+) \times \mathcal{B}(\mathrm{X}(4140) \to \mathrm{J/\psi}\,\varphi) = (5.2 \pm 1.7) \times 10^{-5}$$

The X(4140) and X(4274) candidates

Belle experiment also have searched for X(4140) and X(4274)

[see J. Brodzicka, Heavy flavour spectroscopy (LP09)]


- Belle accumulated more events on B⁺ \rightarrow J/ $\psi\phi$ K⁺ than CDF but could not confirm or exclude the X(4140).
- Loss of efficiency near the threshold resulted in a lower sensitivity to X(4140) at Belle.
- $\bullet \ \mathcal{B}(\mathsf{B}^+ \to \mathsf{X}(4140)\mathsf{K}^+) \times \mathcal{B}(\mathsf{X}(4140) \to \mathsf{J}/\psi\phi) < 6 \times 10^{-6}$

In summary:

- Charmonium states at this mass are expected to have much larger widths because of open flavour decay channels.
- Their decay rate into the $J/\psi\,\varphi$ mode (so near the kinematic threshold) should be small and unobservable.
- Then, the observation by CDF has triggered much theoretical interest about the nature of this candidates.
- \bullet The existence of X(4140) and X(4274) candidates remains unconfirmed.

Search for X(4140) and X(4274)

- The LHCb sensitivity to X(4140) signal is a factor two better than in CDF.
- According the CDF results, we should observe $35\pm11~\mathrm{X}(4140)$ signal candidates and $53\pm19~\mathrm{X}(4274)$ signal candidates.
- No narrow structure is observed near the threshold.
- The fit shown in (a) gives a X(4140) yield of 6.9 ± 4.9 events and a X(4274) yield of $3.4^{+6.5}_{-3.4}$ events.
- The fit shown in (b) gives a
 X(4140) yield of 0.6 events with a
 positive error of 7.1 events and zero
 signal X(4274) events with a
 positive error of 10.

- The solid red line represents the result of the fit to our data.
- The dashed blue line represents the the expected signal amplitude from the CDF results.
- The top and bottom plots background functions are:

 a) efficiency-corrected three-body phase-space;
 b) quadratic polynominal.

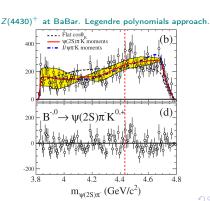
Results on X(4140) and X(4274) at LHCb

Phys. Rev. D 85,091103(R)(2012)

The results of the search for $\mathrm{X}(4140)$ and $\mathrm{X}(4274)$ at LHCb are the two following limits calculated at 90%CL:

$\mathcal{B}(B^+{ o}\mathrm{X}(4140)K^+){ imes}\mathcal{B}(\mathrm{X}(4140){ o}\mathrm{J}/\psi\phi)$				
$\overline{{\cal B}(B^+{ o}J/\psi\phiK^+)}$				
LHCb(a)	LHCb(b)	CDF		
< 0.07	< 0.04	$0.149 \pm 0.039 \pm 0.024$		

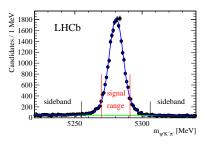
$\mathcal{B}(B^+{\to}X(4274)K^+){\times}\mathcal{B}(X(4274){\to}J/\psi\phi)$			
$\mathcal{B}(B^+{ o}J/\psi\phiK^+)$			
LHCb	CDF (our estimate)		
< 0.08	0.17 ± 0.06		

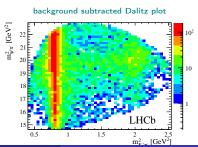

In conclusion, LHCb performed the most sensitive search for the narrow X(4140) and X(4274) structures and:

- Does not confirm the X(4140) state previously reported by the CDF
- \bullet Does not observe any evidence of the X(4274)
- The LHCb results disagree at the 2.4 σ level with the CDF measurement.

$(Z(4430)^{+1})$

- Charged charmonium like state reported by Belle in $B^0 \to \psi(2S) K^+ \pi^-$ decays [Phys.Rev.D88:074026]
- Searched and not confirmed or excluded by BaBar [Phys.Rev.D79:112001]
- Can not be explained as conventional object inside the Standard Model.
- Minimum quark content: ccud
- No corresponding structure observed in $B^0 o J/\psi \, K^+\pi^-$


 $Z(4430)^+$ at Belle. $K^*(892)^0$ and $K_2^*(1432)$ vetoed. With $Z(4430)^+$ and No $Z(4430)^+$ 45 40 Events / 0.17 GeV²/c⁴ 15 10 19 20 $M^{2}(\psi',\pi)$, GeV^{2}/c^{4}

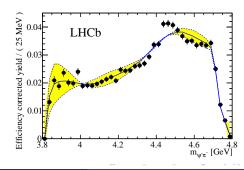


Confirmation of $Z(4430)^+$ at LHCb

arXiv:1404.1903

- Sample with >25.000 ${
 m B^0}
 ightarrow {
 m K^+} \pi^- \psi(2S)$ signal candidates,
- Analysis performed using two different approaches:
 - Model dependent. Four-dimensional amplitude fit.
 - Model independent. An analysis based on the Legendre polynomial moments extracted from the $K\pi$ system
- Background from sidebands. Estimated 4% of combinatorial background in the signal region.
- Four-dimensional efficiency calculated using complete simulation of the detector

$Z(4430)^+$: model independent analysis

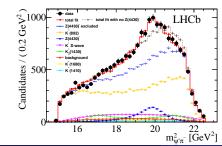

arXiv:1404.1903

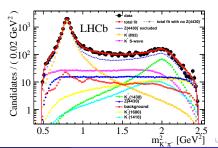
The main goal is to check if the structures in the spectrum can be explained as reflections of the resonance activity in the $K\pi$ system.

- ullet No assumptions on the K^{*} resonances. Only its maximum J is restricted.
- \bullet Angular structure of the $K\pi$ system is extracted using Legendre polynomial moments.
- The moments are used in toy Monte Carlo simulation to predict the expected spectrum.
- \bullet spectrum can not be explained in terms of moments corresponding to resonances with J <= 2 .

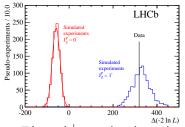
Amplitude fit is necessary for:

- Determine the K^* resonant structure of the $K\pi$ system.
- Determine the Z(4430)⁺ parameters (mass, width, spin etc).

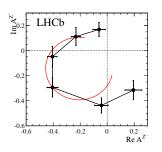

$Z(4430)^{+}$: amplitude fit


• Fitted parameters:

$$M_{Z(4430)^{+}} = 4475 \pm 7_{-25}^{+15} \,\mathrm{MeV}/c^{2}, \Gamma_{Z(4430)^{+}} = 172 \pm 13_{-34}^{+37} \,\mathrm{MeV}/c^{2}$$


$$f_{Z(4430)^+} = (5.9 \pm 0.9^{+1.5}_{-3.3})\%$$

• Significance: $\Delta(-2lnL) > 13.9\sigma$



$Z(4430)^+$: resonance character and spin determination arXiv:1404.1903

- $J^P = 1^+$ assignment favoured.
- Other J^P assignments are rulled out with large significance: $> 9\sigma$
- Z(4430)⁺ amplitude is described by 6 independent complex numbers instead of a Breit-Wigner
- Observe a fast change of phase crossing maximum of magnitude.
- Expected behaviour for a resonance.

Spectroscopy in light quark sector: ${ m B^0} ightarrow { m J/}\psi\,\pi^+\pi^-$

- The substructure of mesons belonging to the scalar nonet is controversial.
- Many possibilities: $q\overline{q}$, $q\overline{q}q\overline{q}$, mixtures etc.
- ullet $q\overline{q}$ case:

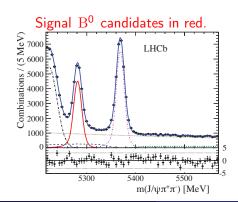
$$|f_0(980)\rangle = \cos \varphi_m |s\overline{s}\rangle + \sin \varphi_m |n\overline{n}\rangle |f_0(500)\rangle = -\sin \varphi_m |s\overline{s}\rangle + \cos \varphi_m |n\overline{n}\rangle,$$
where $|n\overline{n}\rangle \equiv \frac{1}{\sqrt{2}} (|u\overline{u}\rangle + |d\overline{d}\rangle)$.

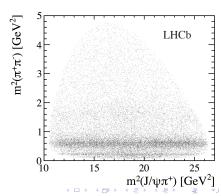
• qqqq case:

$$|f_0(980)\rangle = \frac{1}{\sqrt{2}} (|[su][\overline{s}\,\overline{u}]\rangle + |[sd][\overline{s}\overline{d}]\rangle)$$

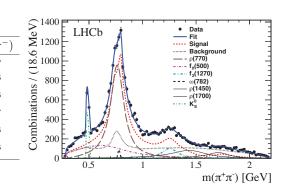
$$|f_0(500)\rangle = |[ud][\overline{u}\overline{d}]\rangle.$$

Observable of interest for both cases:


$$\tan^2 \varphi_m \equiv r_\sigma^f = \frac{\mathcal{B}\left(\overline{B}^0 \to J/\psi \, f_0(980)\right)}{\mathcal{B}\left(\overline{B}^0 \to J/\psi \, f_0(500)\right)} \frac{\Phi(500)}{\Phi(980)}$$


• Prediction for tetraquark states: $r_{\sigma}^f = 1/2$ [PRL 111, 062001 (2013)]

Amplitude analysis of $\mathrm{B^0} o \mathrm{J/}\!\psi\,\pi^+\pi^-$


- Approach similar to the analysis: 4D matrix element describing π^+ π^- resonances;
- No evidence of $J/\psi \pi^+$ resonances
- ullet 19,000 $\mathrm{B^0}$ signal candidates
- Background modelled from sidebands

Amplitude analysis of ${ m B^0} o { m J}/\psi\,\pi^+\pi^-$

R	$\mathcal{B}(\overline{B}^0 \to J/\psi R, R \to \pi^+\pi^-)$
$\rho(770)$	$(2.50 \pm 0.10^{+0.18}_{-0.15}) \times 10^{-5}$
$f_0(500)$	$(8.8 \pm 0.5^{+1.1}_{-1.5}) \times 10^{-6}$
$f_2(1270)$	$(3.0 \pm 0.3^{+0.2}_{-0.3}) \times 10^{-6}$
$\omega(782)$	$(2.7^{+0.8+0.7}_{-0.6-0.5}) \times 10^{-7}$
$\rho(1450)$	$(4.6 \pm 1.1 \pm 1.9) \times 10^{-6}$
$\rho(1700)$	$(2.0 \pm 0.5 \pm 1.2) \times 10^{-6}$

- Best fit model shows does not require $f_0(980)$ component.
- Upper limit on the $f_0(500) f_0(980)$ mixing angle.
- \bullet Different from tetraquark prediction (1/2) by $8\,\sigma$

$$\tan^2 \varphi_m \equiv r_\sigma^f = (1.1^{+1.2+6.0}_{-0.7-0.7}) \times 10^{-2} < 0.098 \text{ at } 90\% \text{ C.L}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Many other results in b and c spectroscopy

Access:

http://lhcbproject.web.cern.ch/lhcbproject/CDS/cgi-bin/index.php

LHCb Papers

N°	Title	Journal	Code	Submit Date	Lead Group
185	Measurement of the Ξ_b^- and Ω_b^- baryon lifetimes	0	LHCB-PAPER- 2014-010	07 May 2014	B2CC
184	Measurement of the resonant and CP components in $\overline{B}^0 \to J/\psi \pi^+ \pi^-$ decays	0	LHCB-PAPER- 2014-012	05 May 2014	B2CC
183	Observation of the resonant character of the $Z(4430)^{-} $ state	()	LHCB-PAPER- 2014-014	07 Apr 2014	B&Q
182	Evidence for the decay $B_c^+ o J/\psi 3\pi^+ 2\pi^-$	()	LHCB-PAPER- 2014-009	1 Apr 2014	B&Q
181	Evidence for the decay $X(3872) o \psi(2S) \gamma$	0	LHCB-PAPER- 2014-008	1 Apr 2014	B&Q
180	Angular analysis of charged and neutral $B o K\mu^+\mu^-$ decays	0	LHCB-PAPER- 2014-007	31 Mar 2014	RD
179	Differential branching fractions and isospin asymmetries of $B\to K^{(*)}\mu^+\mu^+$ decays	()	LHCB-PAPER- 2014-006	31 Mar 2014	RD
178	Study of beauty hadron decays into pairs of charm hadrons	0	LHCB-PAPER- 2014-002	14 Mar 2014	B2OC
177	Measurement of polarization amplitudes and CP asymmetries in $B^0 o \phi K^*(892)^0$	0	LHCB-PAPER- 2014-005	12 Mar 2014	BNoC

Summary and perspectives

X(3872)

- LHCb has measured the mass and production cross section in the range: $5 < p_{\rm T} < 20~{\rm GeV}$ and 2.5 < y < 4.5 using 2010;
- ullet LHCb measured the X(3872) quantum numbers.
- We need to know with higher precision the $\rm D^0$ and masses in order to check if $\rm X(3872)$ mass is up or bellow the $\rm D^0D^*$ mass threshold.
- Charmonium interpretation strongly disfavored.

$$X(4140)$$
 and $X(4274)$

- Not confirmed by LHCb.
- Working in progress at LHCb to update the analysis using 2011 + 2012 dataset.

$$Z(4430)^{+}$$

- Existence confirmation with $> 13.0\sigma$
- Quantum numbers determination $J^P = 1^+$
- Resonant behaviour observed.

Light quark spectroscopy using $B^0 o J/\psi \pi^+\pi^-$

- No evidence for $f_0(980)$ resonance production
- $f_0(980)$ as a tetraquark state ruled out at $8\,\sigma$

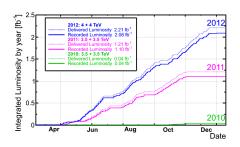
Thanks!

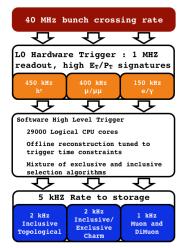
Backup

The LHCb trigger and dataset

Running conditions in most of 2012

LHC: 20 MHz bunch crossing


• Luminosity: $4.0 \times 10^{32} cm^{-2} s^{-1}$, using luminosity leveling


• Visible interactions rate: 12.0 - 14.0 MHz

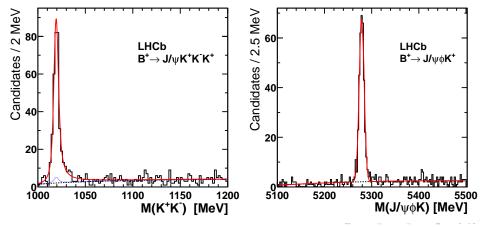
• L0 output rate: 950 kHz

HLT output rate:4.5 kHz

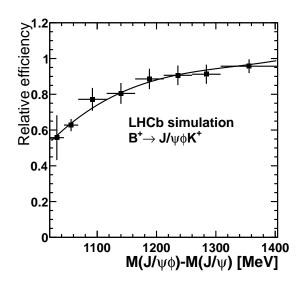
Event size: 60 kB

37 $\mathrm{pb^{-1}}$ acquired in 2010

1 fb^{-1} acquired in 2011


X(3872) mass measurement at LHCb: uncertainties

Source of uncertainty	$\Delta \sigma / \sigma$ [%]
X(3872) polarization	2.1
X(3872) decay model	1.0
X(3872) decay width	5.0
Mass resolution	5.8
Background model	6.4
Tracking efficiency	7.4
Track χ^2 cut	2.0
Vertex χ^2 cut	3.0
Muon trigger efficiency	2.9
Global event cuts	3.0
Muon identification	1.1
Integrated luminosity	3.5
$J/\psi \to \mu^+\mu^-$ branching fraction	1.0
Total	14.3
	'


Cl. t	S	$\Delta m [\text{MeV}/c^2]$		
Category	Source of uncertainty	$\psi(2S)$	X(3872)	
	Natural width	-	0.01	
Mass fitting	Radiative tail	0.02	0.02	
	Resolution	_	0.01	
	Background model	0.02	0.02	
Momentum calibration	Average momentum scale	0.08	0.10	
Momentum candration	η dependence of momentum scale	0.02	0.03	
Detector description	Energy loss correction	0.05	0.05	
Detector alignment	Track slopes	0.01	0.01	
Total		0.10	0.12	

Search for X(4140) and X(4274) at LHCb

- LHCb searched for X(4140) and X(4274) in a sample with 0.376 fb⁻¹ of 2011 dataset [Ref. Phys. Rev. D 85, 091103(R) (2012)].
- Background subtracted sample with $382 \pm 22~B^\pm \to J/\psi \, \varphi K^\pm$ events

Search for X(4140) and X(4274) at LHCb:efficiency

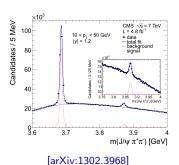
X(3872) quantum numbers: previous measurements

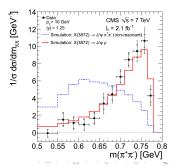
CDF

- Sample dominated by prompt X(3872)
- 3D analysis: fit to $\pi^+\pi^-$ and J/ ψ helicity angles and te angle between the $\pi^+\pi^-$ and J/ ψ decay planes
- X(3872) J^{PC} constrained to 1^{++} or 2^{-+}
- Phys.Rev.Lett.98:132002 (2007)

BaBar

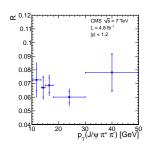
- Observed $34 \pm 7 \text{ X}(3872) \rightarrow \omega \text{J/}\psi$
- Study of $\omega \to \pi^- \pi^+ \pi^0$ mass distribution favoured 2^{-+} , but 1^{++} was not ruled out.
- arXiv:1005.5190, Phys. Rev. D 82, 011101(R) (2010)

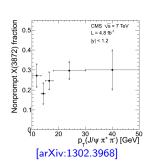

Belle

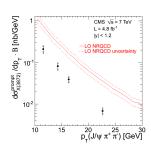

- Observed 173 \pm 16 B \rightarrow X(3872)K, with X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ and J/ $\psi \rightarrow \mu^+ \mu^-$
- By studying one-dimensional distributions in three different angles, Belle concluded that their data were equally well described by the 1^{++} and 2^{-+} hypotheses.
- arXiv:1107.0163, Phys. Rev. D 84, 052004 (2011) A. A. Alves Jr (INFN sezione di Roma)

X(3872) production studies at CMS

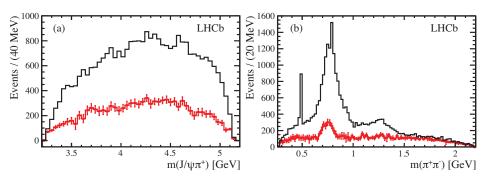
CMS collaboration performed detailed X(3872) production studies using the decay mode X(3872) \to J/ ψ $\pi^+\pi^-$, with J/ ψ \to $\mu^+\mu^-$ and 4.1 fb⁻¹ 7 TeV


- Measurements are performed in the range $10 < p_{\rm T\,X(3872)} < 50~{\rm GeV}$ and rapidity |y| < 1.2.
- \bullet Detailed study of the dipion mass showing the decay proceeds dominantly through a intermediate ρ





X(3872) production studies at CMS


- Ratio of the X(3872) and $\psi(2S)$ cross sections times their branching fractions into $J/\psi \pi^+\pi^-$ measured in function of p_T .
- \bullet Fraction of X(3872) originating from B decays.
- Prompt X(3872) differential cross section times branching fraction into $J/\psi\,\pi^+\pi^-$ and comparison with theory prediction.

$\mathrm{J}\!/\psi~\pi^+$ mass in $\mathrm{B}^0 o \mathrm{J}\!/\psi\,\pi^+\pi^-$

