Updates from Hawaii

Tom Browder, Bryce Jacobson, James Kennedy, Kurtis Nishimura, Marc Rosen, Wen Yen, Andrew Wong

Today's Topics

- Further studies with Fast Focusing-DIRC
 - Enhanced (waveform sampling) readout
 - Cosmic Ray running with new readout
- Readout ASIC Update
 - Initial BLAB2 Performance
 - Plans for full system
- Quartz bar t, {x,y} studies (Hawaii cosmic)
 - Cosmic test stand (close GEANT4 loop)
 - Dense imaging plane concept
- Schedule and Plans

Focusing DIRC Prototype (T-492)

Decided to upgrade all channels to new BLAB electronics

delta(time) (ns)

Moving to Bldg. 121

- LCLS Operations
 - Parasitic running possible, but
 - Rad safety system in ESA
- Move to nice cosmic stand
 - 1 mrad resolution

Precision timing and further studies w/ new electronics

1.6GeV/c P_min through range stack

BLAB ASIC further studies

BLAB1 -- NIM **A591** (2008) 534

- Comparable performance to best CFD + HPTDC
- MUCH lower power, no need for huge cable plant!
- Using full samples significantly reduces the impact of noise
- Photodetector limited

Submitted NIM, arXiv:0805.2225

Highly Integrated Readout

Buffered LABRADOR

TABLE II: BLAB2 ASIC Specifications.

Item	Value	
Photodetector Input Channels	16	
Linear sampling arrays/channel	2₹6	
Storage cells/linear array	512 1	024
Sampling speed (Giga-samples/s)	2.0 - 10.0	
Outputs (Wilkinson)	32	

BLAB2 ASIC

BLAB2 submit 6/23, ASICs received last Monday

Sampling Speed and noise

Eval board USB2

- -Win XP
- Linux
- Mac OS-X

80 ASICs total (1280 channels) [448 needed f-fDIRC]

Linearity

In practice, correct with LUT so INL ~1-2 mV

Frequency Response (with TIA)

Each channel has 6 storage rows of 1024 samples (512 NMOS and 512 PMOS interleaved)

Measured cross-talk

Trigger Performance

Readout System Block Diagram

- Up to 7x64 channels per cPCI card
- Very portable DAQ
- Up to 32,256 channels/cPCI crate

Very cost effective, board hardware already exists, firmware/software dev.

Improved readout timing

Concept: Use best of both ToF + TOP (timing) and DIRC and fit inside detector (background)

- Use new, compact solid-state photon detectors, new high-density electronics
- Use simultaneous T, θc [measured-predicted] for maximum K/π separation
- Keep pixel scale comparable to DIRC

(too) Simple initial idea

29mm

Stand-Off Block (SOB) Coupling

44 x 92 pix/plane = 4048 channels 16 bars x 2 ends x $4048 = \sim 130k$ channels

Problem is, once get in, hard to get out...

Exploring a number of concepts

GEANT4 Simulation Kurtis Nishimura/Larry Ruckman

Looks promising, need to test

Cosmic Test Bench

Quartz bar test <u>bed – 128 drift tube array</u>

Precision Timing Block (T=0)
Radiator viewed by 2x fine-mesh PMTs

Cosmic Test Bench - Infrastructure

128 channel **Discriminator** and TDC board (TRAMP)

(drift-tubes)

Cosmic Test Bench – mech. Stability

Rigidity and stability are excellent

Cosmic Test Bench – Sag analysis

Tracking Resolution Sims.

G4 Simulation

Studying optimizations for image planes

• 100% avail. beam, test different concepts – GEANT confirm

Photon detector options

MCP-PMT (H-8500)

- Will use for initial testing
 - Study realistic time resolution
 - Use BLAB gain to extend lifetime
- Demonstrate timing at lower gain

SiPM/MPPC

- Good stability, 100ps TTS (N=100 p.e. \rightarrow 10ps)
- Need light guide to make work
- Radiation hardness?

• Linear arrays

- Started evaluating (good vertical resolution)
- Packaging considerations

Initial Quartz bar test

Cantilevered Loading

~75um max deflection (~3kg load)

Add additional support (outrigger)

Full Image plane test (40mm SOB)

Proximity focus initial target (100mm iTOP thickness)

For good coupling, proposed to taper versus position, but...

Off-axis coupling issues...

(blame octave for image quality...)

Test bench will allow study of planar arrays

First Fitted Track

Fit status was 1

Theta = 14.1181 deg

Phi = 247.083 deg

x0 = 1.2125 cm

y0 = -0.943005 cm

t0 = 177.919 ns

Test Bench Status

Cosmic Data taking for tube alignment in Progress

- Machining of Bar Support in progress
- First tests with H8500 thereafter (debug for f-DIRC)
- **Strategy** is to match full GEANT4 simulations to results seen (close the loop)
- In parallel develop larger image array (~2k channels)
- Add a 2nd Quartz bar
- Add momentum selector (DSSDs and magnet)

Summary

Building toward large-scale prototypes

- December 2008 448 channel BLAB2-based readout system in Bldg 121 f-DIRC test stand
- Timing tests of semi-conductor G-APDs (continuing this autumn)
- Prototype k-Channel imaging plane (autumn)
 - Performance, cost, integration
 - Higher pixellation readout
- Close loop between GEANT4 and prototype (by year's end?)
- Define what needed for TDR input (2009)

Back-up slides

Particle ID Techniques

BaBar DIRC is the starting place

Particle ID at the B-factories

Focusing DIRC Prototype Optics

Radiator:

- 1.7 cm thick, 3.5 cm wide, 3.7 m long fused silica bar (spares from BABAR DIRC).
- Optical expansion region:
 - filled with a mineral oil to match the fused silica refraction index (KamLand oil).
 - include optical fiber for the electronics calibration (PiLas laser diode).
- Focusing optics:
 - a spherical mirror with 49cm focal length focuses photons onto a detector plane.

TDC vs. ADC for signal in run 27

Larry's offline correction method seems to come close to correcting time walk.

Some over-correction, some under-correction., more can be done offline with charge info.

Jochen Schwiening analysis (preliminary)

Gain Needed

Amplifiers dominate board space

Readout ASIC tiny
(14x14mm for 16 channels)

• What gain needed?

- At 10^6 gain, each p.e. = 160 fC
- At $2x10^5$ gain (better for aging), each p.e. = 32 fC
- In typical ~5ns pulse, Vpeak = dQ/dt * R = 32uA * $R = 32mV * R [k\Omega] (6.4mV)$

Gain Estimate		
Rterm	1 p.e. peak	
50	1mV	
1k	20mV	
20k	400mV ₃	

Chromatic dispersion

Variation of propagation velocity depending on the wavelength of Cherenkov photons

- Due to wavelength spread of detected photons
- > propagation time dispersion
- Longer propagation length
- → Improves ring image difference But, decrease time resolution.

Techniques complement each other!

Separation Concept using Log L

90 degrees (normal incidence)

