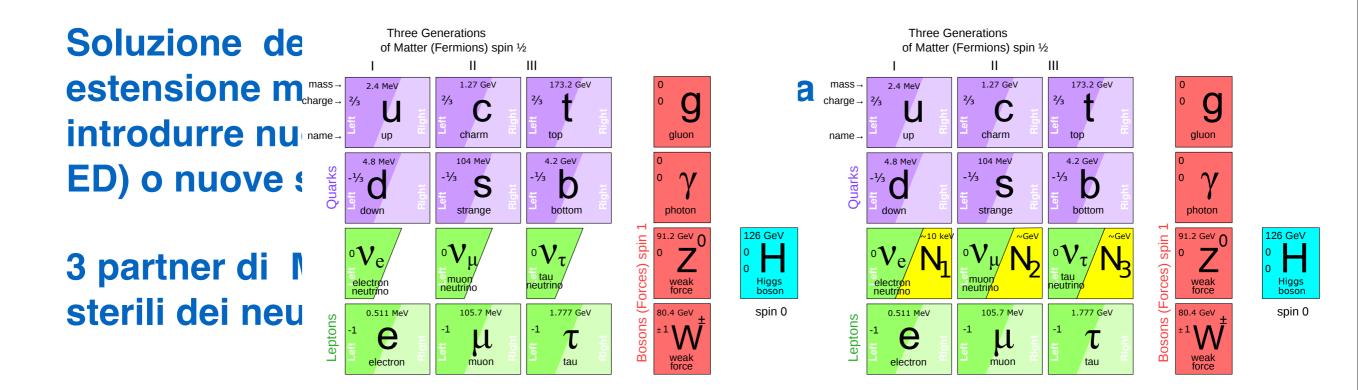

SHIP: verso una proposta di esperimento di beam dump al CERN-SPS per la ricerca di HIdden Particles

Walter M. Bonivento CERN/INFN Cagliari

a rappresentare la Collaborazione SHIP

CERN, Universität Zürich, EPFL Lausanne, INFN Cagliari, Università Federico II and INFN Napoli, Imperial College London

(per ora)


WN 21/03/2014

Problemi aperti

Nonostante tutte le misure siano in accordo con il MS finora, rimangono sul tavolo almeno 3 "problemi" sperimentali dello SM (+altri teorici):

- massa dei neutrini (dall'esistenza delle oscillazioni)
- · asimmetria barioni-antibarioni universo (BAU)
- materia oscura

Possibile soluzione: vMSM

T.Asaka e M.Shaposhnikov, PLB620 (2005) 17

Caratteristiche vMSM

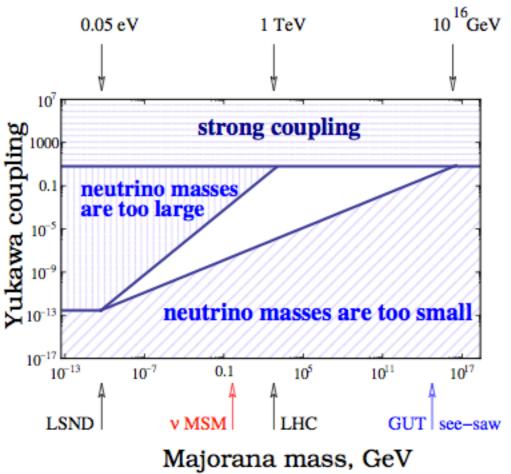
Punto di partenza: la Lagrangiana see-saw (tipo 1)

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{\substack{I=1,2,3;\\\ell=1,2,3(e,\mu,\tau)}} i\overline{N}_I \partial_{\mu} \gamma^{\mu} N_I - Y_{I\ell} \overline{N}_I \Phi^{\dagger} L_{\ell} - m_I^R \overline{N}_I^c N_I + h.c$$

mixing con neutrini attivi

- · Imponendo i vincoli di tipo osservativo su BBN, BAU, oscillazioni neutrini atttvi, materia oscura, si ottengono:
 - N1 di massa O(10 keV) con un piccolo mixing con gli altri due —>candidato Dark Matter (ne parlo dopo...piatto caldo!)
 - N2 e N3 quasi degeneri in massa e con massa >>eV e < della scala EW
 ->oggetto di questa proposta; spiegano la asimmetria materia-antimateria (attraverso oscillazioni dei neutrini sterili con violazione di CP seguiti da una transizione con sphalerons) e danno massa ai neutrini tramite il meccanismo see-saw (type 1)
- NB: per un seminario di cosmologia sui dettagli di tutto questo, M. Shaposhnikov e' la persona giusta a cui chiedere

Interazioni dei N

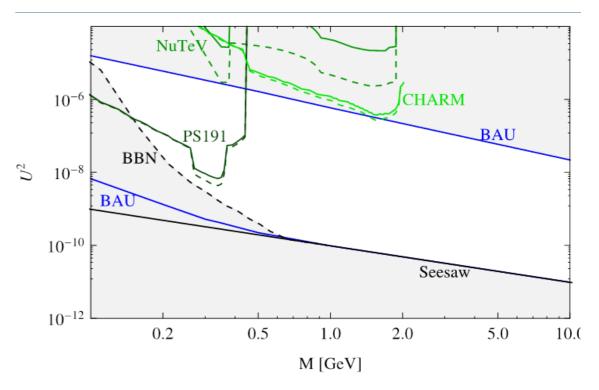

- queste particelle sono sterili, ovvero non si accoppiano con le interazioni note; unicamente mescolano con i neutrini attivi —> "partecipano" in tutti i diagrammi di Feynman in cui sono coinvolti i neutrini attivi purche' cinematicamente possibili
- il mixing con i neutrini attivi e' dato da U i₁=Yi₁ v/√2 mi₀

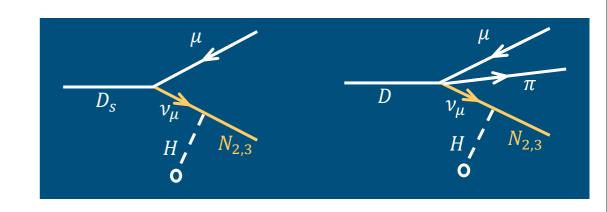
$$\mathcal{U}^2 = \sum_{\substack{I=1,2\\\ell=e,\mu,\tau}} |\mathcal{U}_{\ell I}|^2$$

la relazione tra Ue, Uμ e Uτ dipende dal mescolamento tra sapori

HNL e see-saw

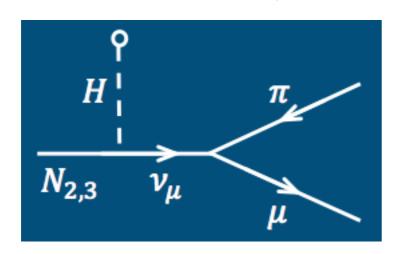
 In questo modello il see-saw e' ottenuto con HNL di massa relativamente piccola (e quindi con Yukava piccoli). In realta' il range di masse e accoppiamenti permessi e' dato da:

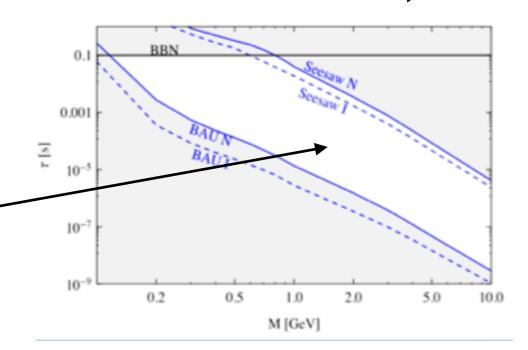

	N mass	v masses	eV v anoma- lies	BAU	DM	M _H stability	direct search	experi– ment
GUT see-saw	10-16 10 GeV	YES	NO	YES	NO	NO	NO	-
EWSB	10 GeV	YES	NO	YES	NO	YES	YES	LHC
v MSM	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
v scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND


arXiv:1204.5379

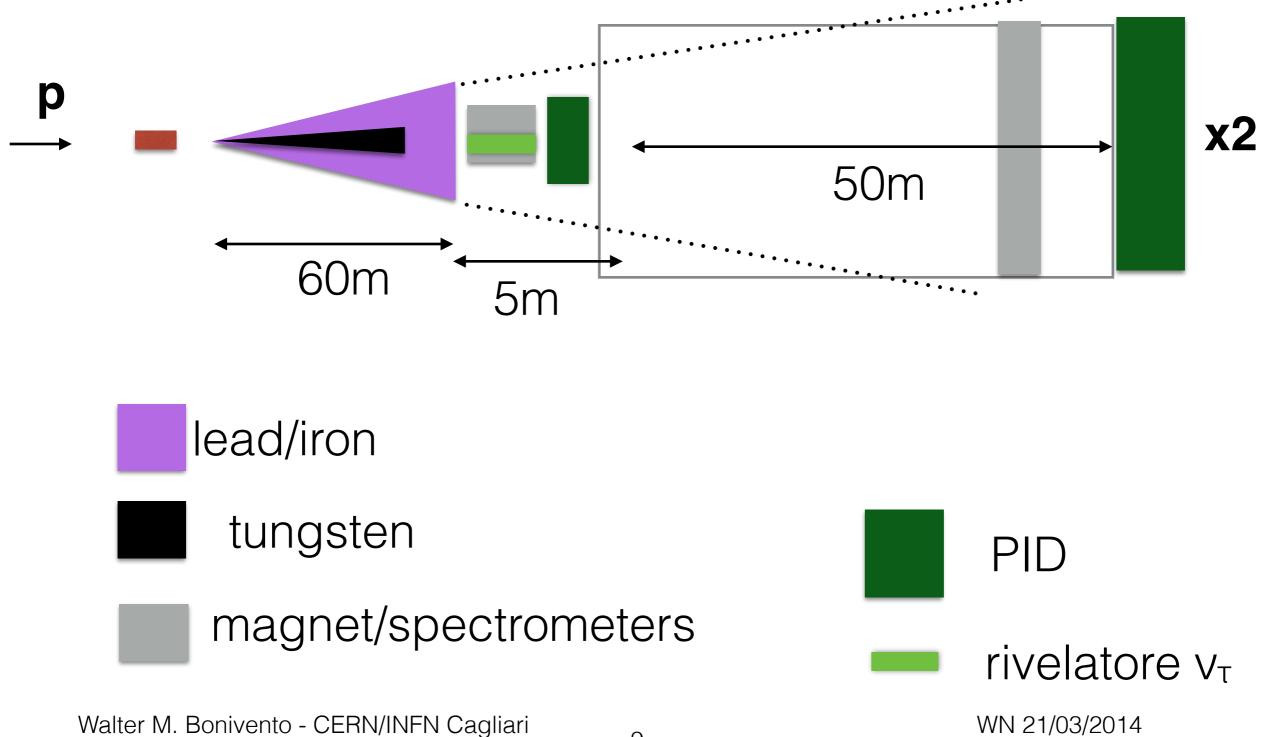
Produzione di N_{2,3}

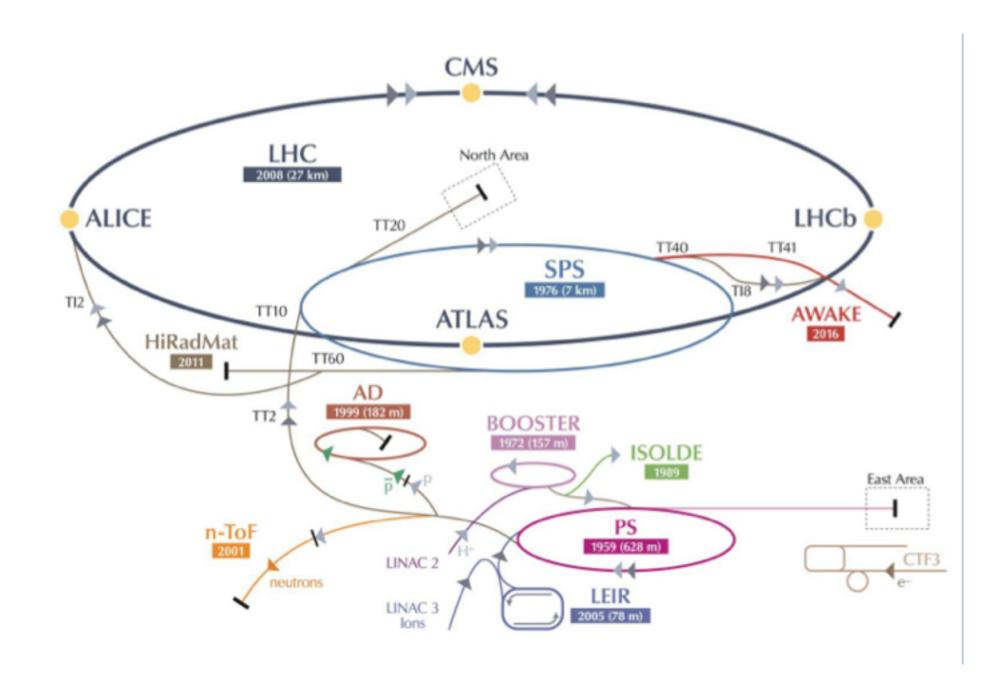
- nel vMSM forti limitazioni nello spazio dei parametri (U²,m)
- molte ricerche di HNL in passato ma, per m>m_K, con sensibilità' non di interesse cosmologico (es LHCb in decadimenti del B raggiunge U²≈10⁻⁴, arXiv:1401.5361)
- questa proposta: ricerca in decadimenti dei mesoni D (prodotti ad alta statistica nella collisione di p di 400 GeV su bersaglio fisso)
- Lo scopo di questa collaborazione e' di progettare un esperimento che ottimizzi tutti i parametri sperimentali, dato il fascio (che esiste, SPS).


gerarchia inversa di massa dei neutrini



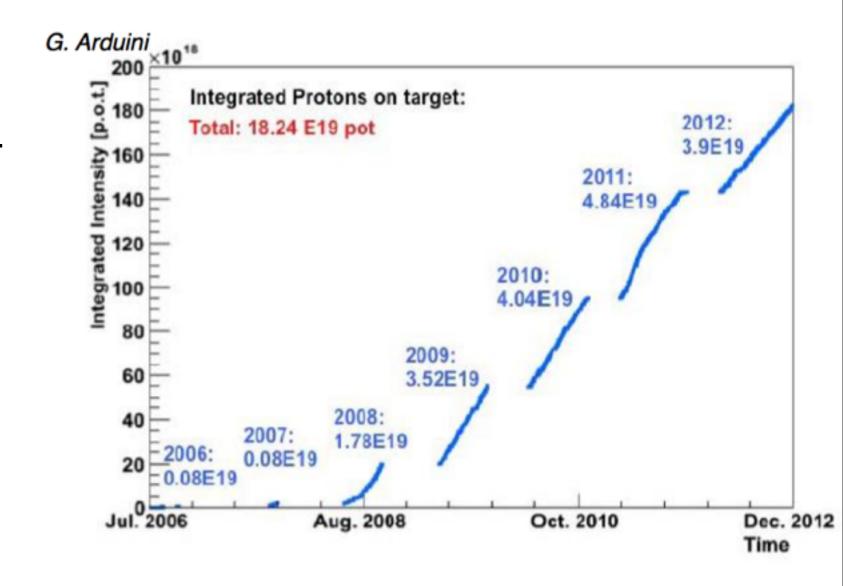
Decadimenti del N_{2,3}


- Accoppiamento HNL-v attivo molto debole
 —>N_{2,3} hanno vita media molto lunga
 - distanze di decadimento O(km)!: per $U_{\mu}^{2}=10^{-7}$, $\tau_{N}=1.8x10^{-5}s$
- Vari modi di decadimento : i BR's dipendono dal mescolamento tra sapori
- Probabilita' che $N_{2,3}$ decada nel volume fiduciale dell'esperimento $\propto U_{\mu}^{2}$
 - —> numero di eventi ∝ U_μ⁴

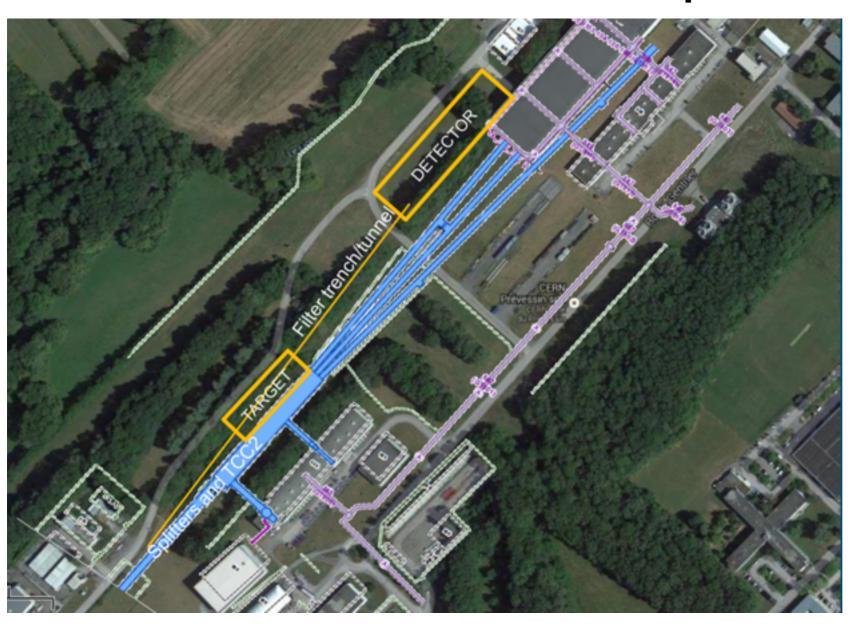


Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^-/e^- + \rho^+$	0.5 - 20 %
$N_{2,3} \rightarrow v + \mu + e$	1 - 10 %

Concetto



Il complesso degli acceleratori del CERN



II fascio

- Fascio SPS estratto 400GeV; intensità' come CNGS 4.5x10¹⁹ pot/anno.
- Se upgrade PS si puo' arrivare a 7x10¹⁹
- caratteristiche dei fasci discusse in grande dettaglio con esperti del CERN —>design realistico —>5 anni di run SENZA UPGRADE: 2x10²⁰pot

Possibile zona sperimentale

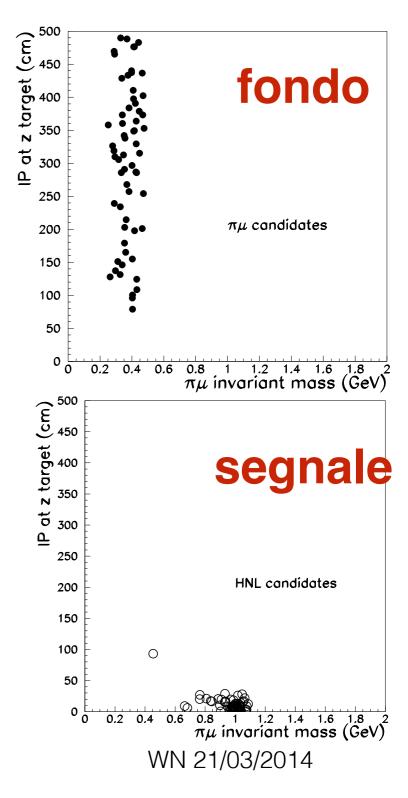
Rivelatore posto IN SUPERFICIE

Estrazione in SPS-LSS2, beam switch lungo la transfer line (TT20) alla posizione dei magneti di splitting MSSB2117. Studio di fattibilita' in corso al CERN.

gli studi effettuati per il proposal della facility del neutrino molto utili per noi

Walter M. Bonivento - CERN/INFN Cagliari

12

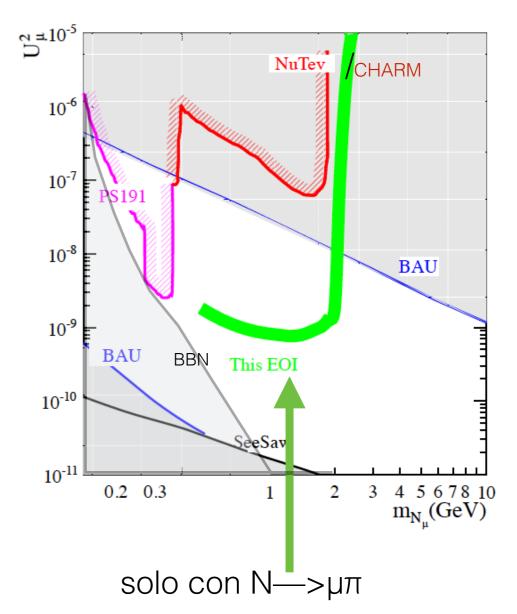

WN 21/03/2014

Rivelatori proposti

- Quasi nessun R&D da fare: ce la possiamo fare con rivelatori di tipo tradizionale, ottimizzando i parametri
 - ->questo significa che dall'approvazione si puo' iniziare subito a costruire il rivelatore
- Camere a mu e filtri (x3)—> da progettare. Si potrebbe recuperare da OPERA, almeno parzialmente. Stiamo considerando anche WPC a' la LHCb e eventualmente RPC di nuova generazione.
- Camere di tracciamento e di veto (x2): straw tubes come per NA62, bassa X₀, 0.5% per 4 stazioni!
- Rivelatore per ν_τ (vedi dopo)
- trigger e acquisizione dati: pensiamo di utilizzare il modello HLT dell'upgrade di LHCb (i.e. no L0)

Soppressione fondi

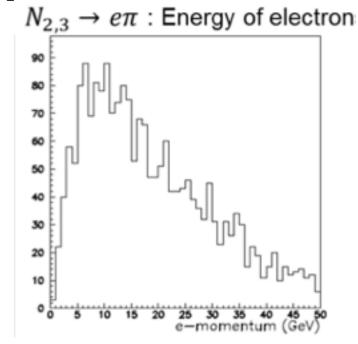
- Interazioni di neutrini attivi
 - nel tunnel di decadimento: a pressione atmosferica $2x10^4$ interazioni —>vuoto 10^5 bar (molto meno di NA62 che usa 10^{-8} bar!)
 - nell'ultima lunghezza di interazione del dump —->produzione di K _L—>μπν
 - in $2x10^{20}$ pot 600k CC interazioni di v_{μ}
 - 150 eventi con entrambe le particelle cariche che escono dallo spettrometro —>rigettate da tagli cinematica sul parametro di impatto
 - inoltre un altro fattore 10-40 si puo' ottenere equipaggiando l'ultima parte del dump con un rivelatore attivo per "taggare" le interazioni di neutrino

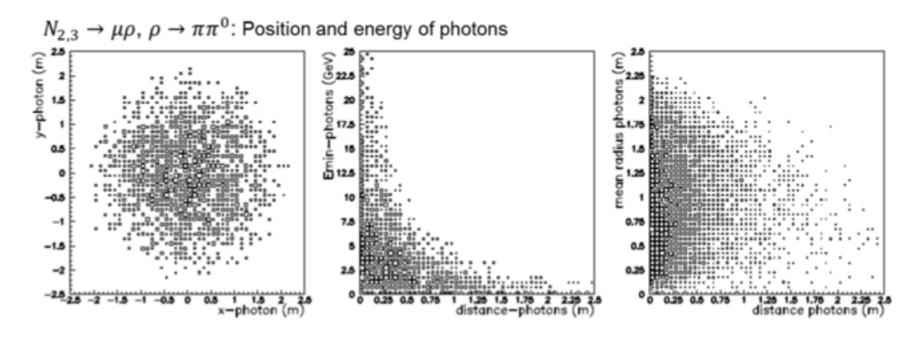

Sensibilita'

(gerarchia di massa dei neutrini attivi inversa)

Assumendo 0 fondo (che pare ben giustificato dai nostri studi)

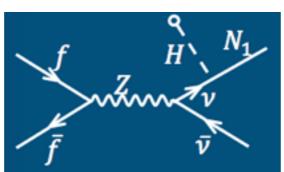
-> <u>finestra di opportunità</u> per questo esperimento di sondare la zona di interesse cosmologico

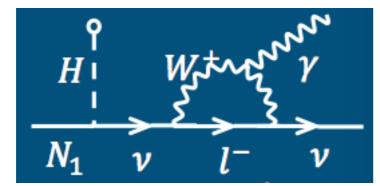

 se si rinuncia a spiegare la Dark Matter —>modello molto meno vincolato, spazio dei parametri di interesse cosmologico più esteso, HNL non degeneri


(in uno scenario in cui l'accoppiamento al sapore muonico e' dominante)

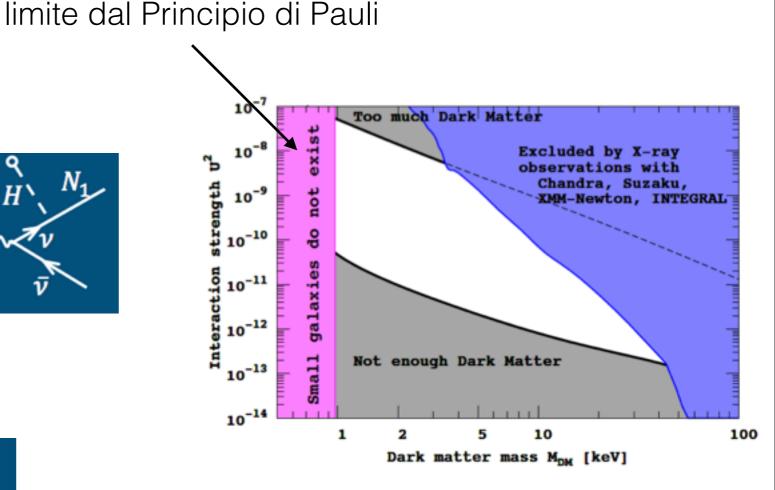
Altri canali HNL

- Un calorimetro e.m. permetterebbe la ricostruzione di modi addizionali di decadimento:
 - N—>e⁺π⁻ che permetterebbe di accedere al limite su Ue
 - N—> $\mu^+ \rho^-$ con $\rho^- -> \pi^- \pi^0$ che permetterebbe di migliorare il limite su U_μ (tipicamente lo stesso BR di $\mu+\pi$ -, per m>1Gev)


Assumendo celle calorimetriche di 10cm


N_1

- Stabilita' —> τ>τ(universo)
- Produzione —>creato nell'Universo nella fase iniziale nelle reazioni ll>vN₁, qq—>vN₁


deve fornire la corretta abbondanza di DM

Decadimento —> il decadimento radiativo N_1 —> γV fornisce una linea nello spettro X a E(γ)=m1/2

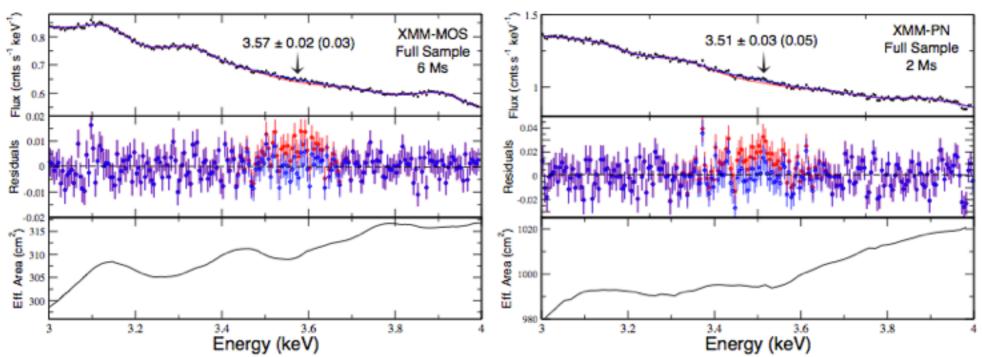
 Allargamento linea da Doppler e da effetti strumentali vari

zona di esclusione (OTTENUTA CON MISURE SU SINGOLE GALASSIE)

CNN breaking news

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

ESRA BULBUL^{1,2}, MAXIM MARKEVITCH², ADAM FOSTER¹, RANDALL K. SMITH¹ MICHAEL LOEWENSTEIN², AND SCOTT W. RANDALL¹


¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.
² NASA Goddard Space Flight Center, Greenbelt, MD, USA.
Submitted to ApJ, 2014 February 10

there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with $m_s = 2E = 7.1$ keV, our detection in the full sample corresponds to a neutrino decay mixing angle $\sin^2(2\theta) \approx 7 \times 10^{-11}$, below the previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model

 idea: mettere insieme 73 osservazioni di cluster di galassie per aumentare la statistica: analizzate le osservazioni di XMM-Newton e Chandra. Correzioni per il red-shift (0.01-0.35)

Un esempio di plot

- incompatibile, dicono gli autori, con linee atomiche note e con possibili effetti strumentali (non sono un esperto per giudicare se hanno ragione)
- la significanza dichiarata e' 3σ in vari sub-campioni >pertanto e' il caso di aspettare ed essere cauti.

Un altra breaking news!

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

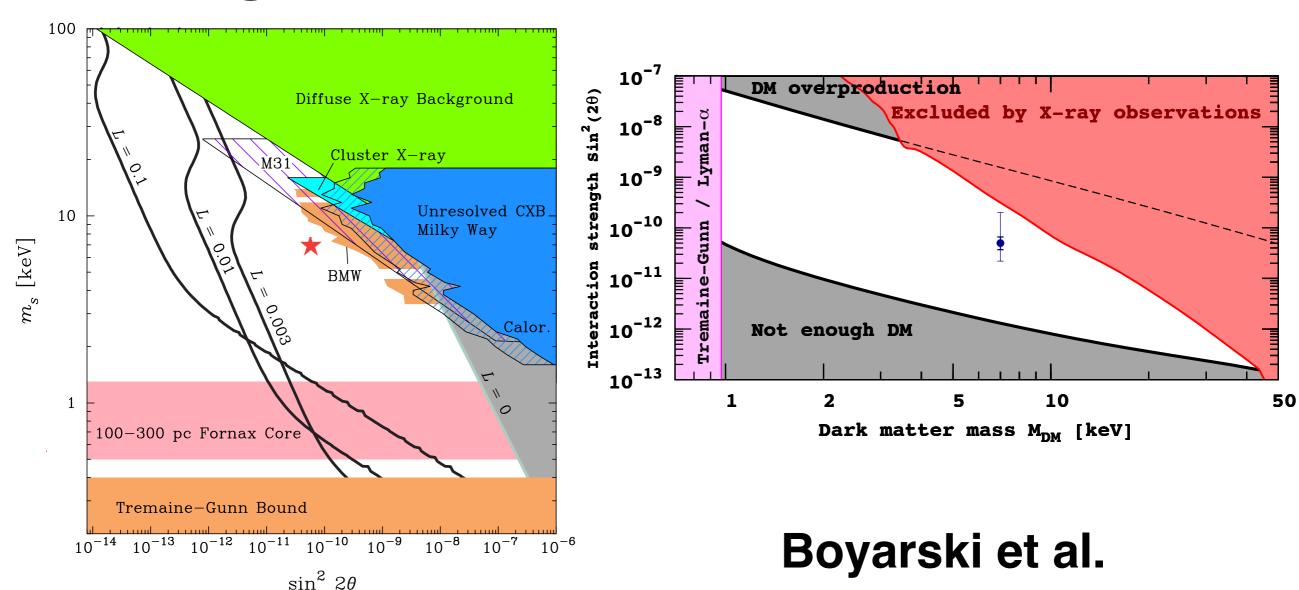
A. Boyarsky¹, O. Ruchayskiy², D. Iakubovskyi^{3,4} and J. Franse^{1,5}

¹Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

²Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

³Bogolyubov Institute of Theoretical Physics, Metrologichna Str. 14-b, 03680, Kyiv, Ukraine

⁴National University "Kyiv-Mohyla Academy", Skovorody Str. 2, 04070, Kyiv, Ukraine


⁵Leiden Observatory, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands

We identify a weak line at $E \sim 3.5$ keV in X-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster – two dark matter-dominated objects, for which there exist deep exposures with the XMM-Newton X-ray observatory. Such a line was not previously known to be present in the spectra of galaxies or galaxy clusters. Although the line is weak, it has a clear tendency to become stronger towards the centers of the objects; it is stronger for the Perseus cluster than for the Andromeda galaxy and is absent in the spectrum of a very deep "blank sky" dataset. Although for individual objects it is hard to exclude the possibility that the feature is due to an instrumental effect or an atomic line of anomalous brightness, it is consistent with the behavior of a line originating from the decay of dark matter particles. Future detections or non-detections of this line in multiple astrophysical targets may help to reveal its nature.

arXiv:1402.4119v1 [astro-ph.CO] 17 Feb 2014

- Osservazione consistente di una linea at 3.5KeV with 3-4 σ significance
- Analisi diversa dalla precedente e su dati diversi, con controlli anche sulla dipendenza radiale e sul contenuto relativo di DM
- · Molte analisi in corso che potranno chiarire la situazione
- · Missione Astro-H sara' lanciata nel 2015 e aiutera' a chiarire la situazione

For fun: nel grafico bi-dimensionale

Harvard, NASA ecc.

Tuttavia questo e' un esperimento sia per atei sia per credenti!

(ndr:nella SUSY)

these studies are starting!

Other BSM physics to be tested

Portals to the secluded sector

light, very weakly interacting, yet unstable particles: produced (in)directly on target, then decaying in the detector fiducial volume

light sgoldstinos (superpartners of goldstino in SUSY models)

e.g.
$$D \rightarrow \pi X$$
, then $X \rightarrow I^+ I^-$

LSP

R-parity violating neutralinos in SUSY models

e.g.
$$D \rightarrow I \tilde{\chi}$$
, then $\tilde{\chi} \rightarrow I^+ I^- v$

massive paraphotons (in secluded dark matter models)

e.g.
$$\Sigma \rightarrow p V$$
, then $V \rightarrow l^+ l^-$

light, fairly weakly interacting, unstable particles:
 produced in beam dump (rock), right in front of detector, then decaying in the detector fiducial volume

sterile neutrinos with transition dipole moments
 e.g., S.N. Gninenko (2009,2010)

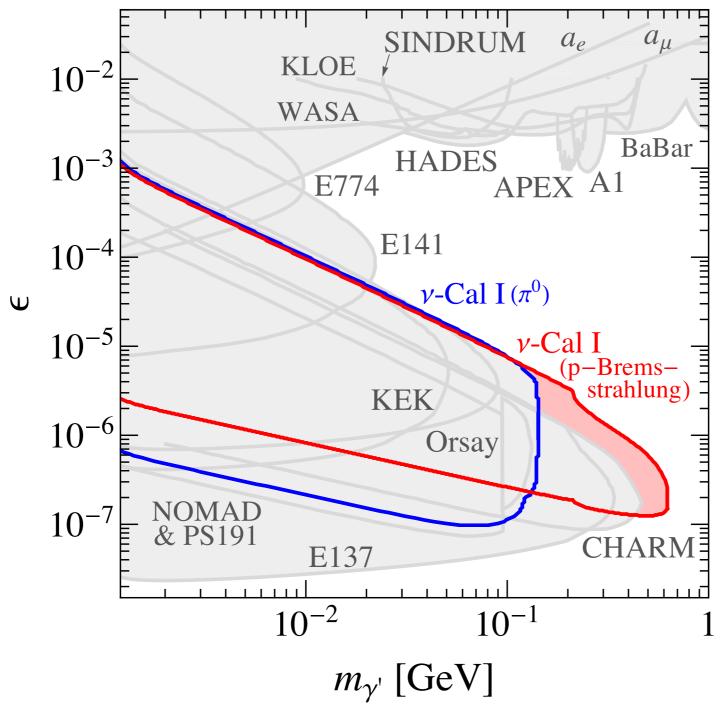
$$vA \rightarrow NA$$
, then $N \rightarrow v\gamma$

as compared to CHARM longer lifetimes and smaller couplings will be accessible

s-Goldstinos

$$\tau_X = 10^{-6} \,\mathrm{s} \, \times \left(\frac{\sqrt{F}}{1000 \,\mathrm{TeV}}\right)^4 \left(\frac{3 \,\mathrm{TeV}}{M_{\lambda_g}}\right)^2 \left(\frac{1 \,\mathrm{GeV}}{m_X}\right)^3$$

- axion-like and dilaton-like particle in SUSY
- coupling to gluons dominant —>decay to $\pi\pi$
- lifetimes O(Km)
- for a light scalar s-G with 2e20 pot $N_{\pi^+\pi^-} \simeq 2 \times \left(\frac{1000\,\mathrm{TeV}}{\sqrt{F}}\right)^8 \left(\frac{M_{\lambda_g}}{3\,\mathrm{TeV}}\right)^4 \left(\frac{m_X}{1\,\mathrm{GeV}}\right)^2$


LSP

$$N \simeq 20 \times \left(\frac{m_{\chi_0}}{1 \,\text{GeV}}\right)^6 \left(\frac{\lambda}{10^{-8}}\right)^2 \left(\frac{\text{Br}(D \to \chi_0 + \ldots)}{10^{-10}}\right)$$

- with 2e20 pot
- while

$$\Gamma \propto \lambda^2 m_{\chi_0}^5$$

For massive vectors

Conclusioni

- Test di una spiegazione alternativa rispetto ai soliti modelli (SUSY, ED) di importanti fenomeni osservati non compatibili con il Modello Standard
- Tecniche complementari rispetto a esperimenti esistenti —>lunghe vite medie
- Il fascio c'e' e il rivelatore si puo' costruire in breve tempo appena data l'approvazione. Tutte le tecnologie proposte esistono e funzionano! Non ci sono R&D cruciali per l'esperimento che necessitano anni di studi preliminari.
- Una proposta che il CERN sta valutando molto seriamente. Nessuna altra facility al mondo ha (e aggiungerei avra', viste le proposte in circolazione) le potenzialita' per effettuare questa misura con sensibilita' competitive o comunque in grado di sondare la regione di interesse cosmologico, per m>mK