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Material Science for next generation
Accelerator systems

Introduction
® [nterplay between Beam and Surfaces: some real examples

(LHC)

® UWhat happens to the Vacuum beam pipe in presence of the
beam?

The Surface Science properties of relevance: SEY, PY, R,
Mitigation strategies

conclusion
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One real example to see it:

8-10-2010

450 GeV — 150 ns bunch spacing:
Merged vacuum @ LIHC




Exotic Vacuum behavior @ LHC:
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450 GeV — 150 ns bunch spacing: Merged vacuum




Easily solved: Installation of Solenoids
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Pressure [mbar]

Solenoids effect on pressure

1.00E-07
[| ———vePE.9.4L1.X
—\/GPB.S.4R1.X
- 2.00E+13
— BeamB1 b
——BeamB2 ‘ Solenoid ON
AdLl Solenoid ON
A4R1
1.00E-08 - 2.00E+12
Beam
Intensity 2006411
el / \ 7
L—' =21 | 2.00£+10
e After 20 min After 20 min|
- F
A . , R_emov_e multipacting ‘ R
5000 2000 8000 Still primary electrons

15000

Time [sec)

Beam [p]




Solenoids effect on pressure
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E-cloud history . ,

G. Budker et al

® 1965 INP PSR Transverse instability el beam [0S  mmmm—p
® 1971 ISR e-p, 1977 Beam induced multipacting

* 1988 LANL PSR vertical instability clbeam loss
* 1988 KEK PF multibunch instability

* Since 1996 BEPC IHEP-KEK collaboration

® 1997 LHC crash program launched

° 1997 CESR." anomalous anti-damping explained
° 1997/98 APS e cloud study start

* Since 1998 SPS e cloud with LHC beam | sande
° 2000 @S e cloud with LHC beam UG LEITER 16 SEUD
T. Toyomasu

* Since 1999 e cloud at KEK®B and PEP-I11 o

* Since October 2001 evidence for e cloud at RICH e : l

* Since december 2002 e cloud at TEVATRON o btd "'*1‘1'41"71*1‘1'1'&1[]11*1' ot f' {‘
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e-cloud related workshops




ECLOUD12 sheds light
on electron clouds

Electron clouds - abundantly generated in accelerator vacuum
chambers by residual-gas ionization, photoemission and second
ary emission - can affect the operation and performance of had
ron and lepton accelerators in a variety of ways. T hey can induce
INCreases in vacuum pressure, beam instabilities, beam losses,
emittance growth, reductions in the beam lifetime or additional
heat loads on a (cold) chamber wall. T hey have recently regained
some promunence: since autumn 2010, all of these effects have
been observed during bes 1 commissioning of the LHC

Electron clouds were recognized as a potential problem for the
LHC in the mid-1990s (CERN Courier July/August 1999 p29) and
the first workshop to focus on the phenomenon was held at CERN
in 2002 (CERN Courier July/August 2002 p1 5). Ten vears later, the

fifth clectron-cloud workshop has taken place, again in Europe

More than 60 physicists and engineers from around the world gath-
ered at La Biodola, Elba,on § 8 June to discuss the stage of the art

and review recent electron-cloud cxperience

Valuable test beds

Many electron-cloud signatures have been recorded and a gremt
deal of data accumulated, not only at the LHC but also ot the CESR
Damping Ring Test Accelerator (CesfTA) at Cornell DA®NI
at Frascati, the Japan Proton Research ( omplex (J.PARC) and
PETRA 111 at DESY. These machines all serve as valuable test

beds for simulations of electron-cloud baild up. instabilities and

Bcat load, as well as for new dlagnostics methods. The latter inclade
measurements of synchronous phase-shift and ¢ ryoefiects at the
LHC, as well as microwave transmission., coded aperture images
and time-resolved shiclded pick-ups at CesfTA. The impressive
resemblance between simulation and measurement suggests that
the existing electron-cloud models correc tly describe the phe
nomenon. The workshop also analysed the means of m itigating
electron-clowd effects that are proposed for future projects, such as
Ihe High-Luminosity LHC, SuperK | KB in Japan, SuperB in haly,
Project-X in the US, the upgrade of the 1S1S machine in the UK and
Ibe International Linear Collider (1LC)

An imternational advisory committee had assembled an
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exceptional programme for ECLOUDI2. As a novel feature for
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TVacuum in new generation accelerators
is “more” complex than just “Vacuum”

© Let us see what may cause such beam and/or

pressure instabilities .

© The case of the:

LHC arcs




LHC

] " The LHC (Large
i _._ Hadron Collider) is a

o the particle accelerator

being built at CERN.
Two beams of protons
fly around a ring of

27Rm in circumference.
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Cold Bore @ 1.9 K

VACUUM VESSEL

SMRINKING CYLINDER / ME I-VESSEL

THERMAL SHIELD (55 to T5K)

NON-MAGNETIC COLLARS

IRON YOKE (COLD MASS, 1.9K)

Radial Distance

Extreme High Static
Vacuum (<< 10"’ Torr)




Radial Distance

Cold Bore @ 1.9 K

@ SK<T<20K

T=0, without beam
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Radial Distance

Cold Bore @ 1.9 K

Let us see what happens to the
Beam screen Surface during

/

operation

A 4

T=0, without beam
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Radial Distance

Synchrotron Radiation: Ec =44 e V @ LHC calculation
(B I m——— ~

BS PR
= 1010 -I- ---------- .-.I
== “~
§ 8 “\
o oh = 10 L.H.C \
i é N(IJ |‘|
= '
+ § é 106 “|
=)
p EQ 1 AR | L Lol L T R
‘ 1 10 100 1000

Photon energy (e

v

Time = 0




| hoton reflectivity;

(B
’*%-fvﬁﬁ

BS

8 0.8- 1.2x10° 4x10”
§ §0.8 2
iy N 06- g 2 10 g
V) 0,0 - se———— 0.0
. ] =R R ET P
K ;* : 120 ug 160 ‘? 120 140 160
S it e )
g fHr g :
< ]
.N 02" L S ﬁ
» _ Flat Cu aw\toot
S v |

50 0 50 100 150 200
OA

——

Zahnh6ho 38.6 ym ‘\ 2

N. Mafine et al. App. Surf. Sci. 235, 221-226, (2004) e Y, ,..,..

Time = 2 nsec




Photoemission:(vs. kv, ©, E,T, B) SR and Surface Science
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R, Cimino, V. Baglin, I. R, Collins. Phys. Rev. ST-AB 2 63201 (1999).

Time = 5 nsec
Produced e (PY): very important for single beam instabilities
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Radial Distance

1.0E-06

' Even in absence of SR;
e from ionization of residual gas... etc

MD - LHC type Beam (25/08 18H - 26/08 14:00)

observation

(M. Jimenez)
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1 Beam induced el. acceleration simulation

—
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e induced e emission Sy et S
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Radial Distance

A

e cloud Build-up

E- cloud simulation
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Time structure vs Stmulations.

Time = 25 ns




E- cloud simulation

Beam blow up
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! e induced heat load
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R, Cimino et al Phys. Rev. Lett. 93, 14801 (2004)
Time = 25 ns
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Surface Science and

simulation

ph. and/or e induced desorption
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Material Science for next generation
Accelerator Vacuum systems

® Introduction
® [nterplay between Beam and Vacuum: some examples (LHC)
® UWhat happens to the Vacuum beam pipe in presence of the beam?

® The Surface Science properties of relevance: SEY, PY, R

® Mitigation strategies

® conclusion




The Surface Science Actors:

© Secondary Electron Yield (the number of electrons created after
bombardment of a single electron. )

® Photoelectron Yield (the number of electrons created after
bombardment of a single photon)

® Photo-reflectivity (the number of photons reflected by the
surface)

And their dependence on:

material, Enenyy, angle, temperature, magnetic freld,
Conditioning etc etc. . ..




The Surface Science Actors:

© Secondary Electron Yield (the number of electrons created after
bombardment of a single electron. )

And their dependence on:

material, Enenyy, angle, temperature, magnetic freld,
Conditioning etc etc. . ..




We set up and are working on two Surface Science “state of the art”
study, produce and test low SEY ﬁ[ms @ (Da<|)ne nglit La5om

\ ' "'w

Chamber for

reactions

\ \ Xm_')iamp -

mm
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We set up and are working on two Surface Science ‘state of the art” systems to
study, produce and test low SEY films @ Dadpne Light Laboratory

v

» u-metal chamber;

> En. & angle res. analyser;
» Low T manipulator;

» LEED - Auger RFA;

> Faraday cup.

> Low eneryy electron gun
> Mass spectrometer

> Sample preparation

T

-

> Monocromatic fiigh el = | Pa P\
resolutionVUV Lamp y The UPS system
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Activity of the LNF Material
Science Laboratory

Our Laboratory is becoming an internationally recognized reference Lab for
material science analysis and tests of relevance for e-cloud studies.

We are studying (in collaboration with international [abs):
CERN- LHC (Dipole chamber) Cu Samples

CERN — S®S SS and a-C Coatings

Al from DAFNE and PETRA 3 (DESY)

Stainless Steal (from RICH, Brookhaven)

TiN " test” samples produced at LNTF and from PEP




Measure of Secondary e Yield

What we have now @ LNF:
2 u-metal chamber;
(2 different En. & angle res. analyser)
2 sample manipulators (1 for Low T ) =" /
2 LEED - Auger RFA;
2 Faraday cup.
2 Low enerygy electron gun |
2 Mass spectrometer ' /
2 (different) Samples preparation systems. |

* ¢ beam Stable between 30 - 500 eV
* Currents from few nA to uA (20uC/h/mm?- 20mC/h/mm>
o [Intense spot (§ < 0.5 mm) with low background

SE(Y 6 Tout Igun - Isample

Im Igun

INFN
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Measure of Secondary e Yield
SE(Y 6 Tout __ Igun - Isample |,, PELTA

Im Tgun

Cu as
received

At each Primary energy we can measure 13 |

Igun (with the Faraday cup) and Isample.

incident clastically reflected 1.0

true secondary rediffused

/.

Cu fully scrubbed

0.50

L
energy transfer killed

secondary electron emission

three-step process: 0.0
* production of SEs at a depth = 0 100 200 300 400
* transport of the SE toward the surface Primary energy (eV)

* emission of SE across the surface barrier R, Cimino et al
Phys. Rev. Lett. 93, 14801



Measure of Secondary e Yield
SE(Y 6 Tout __ Igun - Isample |,, PELTA

Im I gun

Cu as
received

At each Primary energy we can measute

Igun (with the Faraday cup) and Isample.

Ep=312 eV Ep=41 eV _ Ep=tleV
]| oeonderes Cu fully scrubbed
electrons Reflected
‘ R?flected / electrons
electrons \
0.50
0 80 160 240 320 o 60 120 0 4 8 12 16
Kin. En. (eV) Kin. En. (eV) Kin. En. (eV) 0.0
0 100 200 300 400
* Each point in O is the integral of the energy ~ Primary energy (eV)
R, Cimino et al

dwﬂutzon of the emitted electrons Phys. Rev. Lett, 93, 1480




SEY on LHC Cu @ Low energy

® TIntegrating the curves qives the Percentage o
Seco%d'aﬁ% and Q{gﬂ'ectéqd' electrons %e of

(11

® Do separate " trye secondaries from " re-
diffused electrons  is arbitrary and has not
been considered in this analysis.

0 20 40 60 80 100 120
Kinetic Energy (eV)

. Fully scrubbed Cu

We observe that the contribution to| 7

0.80 |-

O of the reflected electrons at very | + .|
low primary energy is, in this
material, very high.

d total

Contribution
of secondaries
to &

Contribution of reflected
electrons to 6

00 |

imino, et al., Phys. Rev. Lett. 93 (2004) 014801




arc heat load vs. intensity, 25 ns spacing, ‘best’ model
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.... And has a tremendous impact to £
simulations (see calculation for !
LHC) °
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calculation for 1 batch

heat load for quadrupoles higher
Frank Zmmermana, LTC 06.04.05 in 2 balch; still to be clarified
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walls with a SEY ~1.3 or below!

Surface Scrubbing Intrinsically low
(or conditioning) SEY material

Geometrical modifications Electrodes in the lattice.

External solenoid field
-

INFN
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Surface Scrubbin -Efficiency
(or conditioning (time Gf_%;a[ SEY)...

Geometrical I'mpedance.
modifications Machining costs.

Intrinsically low Stability and material
SEY material choice. . .

Electrodes in the If possible. . .
lattice. (Impedance, costs.)

External solenoid field. Not always possible...

Napoli 12-2-2013



”»

The Beam " scrubbing  effect is the ability of a surface to
reduce its SEY after e bombardment.

from LHC PR 472 (Aug. 2001):

“... Although the phenomenon
of conditioning has been
obtarned reproductbly on many
samples, the exact mechanism
leading to this effect is not
property understood. This is of
course not a comyfortable
Sttuation as the LHC operation
at nomsinal intensities relies on

this effect...”

Napoli 12-2-2013
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Beam scrubbing effect with photon

ﬂ OFE Colaminated Copper

— A s received surface; PY=0.103
(dose<1 min. LHC operation)

— After ~ 1 day LHC operation; PY=0.063

Intensity (a.u.)

-2 0 2 4 6 8 10 12 14
Electron energy above the vacuum level (eV)

See: R, Cimino et al Phys. Rew. AB-ST 2 063201 (1999)
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Study the Chemistry governing the SEY with X ray
photoelectron spectroscopy

) SEY
Atomically ol
clean Su(ﬁzce secondary electrons
1.0 Omax=1-3
escape 00000000000000
00000000000000
L 00000000000000 metal 00 ' ' ' '
2 0 100 200 300 400

Primary energy (eV)

> the effective SEY of the metal is strongly modified by the surface contamination

« . ” secondary electrons S
As received” .77 SR 2.0-
suface | ERRERELAEC
00 0048907 50000000000 07 700 .
e || SEBEEER
depth 000000000000 00NE. )
00000000000000. 00 ! ! ! !
2 0 100 200 300 400
S Primary energy (eV)
>  SEY is very Surface sensitive and XPS is a powerful tool to study its chemistry depena

=



X-ray photoelectron spectroscopy , _,.

KE emiss
B % C1s
’ Vale¢
KE=hv-BE-P frv=400 eV
th Cor
E 5 Secc KE: Kinetic energy —> <
Em ~_ 4 b , FWHM = 250 meV
N t
i 9 Valence band wor&func ron
BE: binding energy
...... Core level
I I I I I
287 286 285 284 283
P TN binding energy (eV)
electron
analyzer 7)) hv=1253.6 eV

FUWHM = 0.95 eV

| | | | |
287 286 285 284 283
binding energy (eV)
=
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XPS spectroscopy of technical samples

binding energy (eV)




XPS spectroscopy of technical samples

oxygen

e | ee  _ eeee




XPS spectroscopy of technical samples

O
hydrogen

O O
oxygen carbon

metal

290 288 286 284 282
binding energy (eV)



XPS spectroscopy of technical samples

©)

hydrogen
© O
oxygen carbon
Cls
C-C sp?

12'5 : 153 : 1é1 ' 1%9 ' 1%7 : 1%5 ' 1%3 v11r1 l I | |
290 288 286 284 282
~ binding energy (eV) binding energy (eV)




XPS spectroscopy of technical samples

©)

125 123 121 119 117 115 113 111

290 288 286 284 282
~ binding energy (eV) binding energy (eV)




XPS spectroscopy of technical samples

O
hydrogen

O O
oxygen carbon

290 288 286 284 282
~ binding energy (eV) binding energy (eV)




XPS spectroscopy of technical samples

O
hydrogen

O O
oxygen carbon

290 288 286 284 282

binding energy (eV) binding energy (eV)



co-laminated Cu for LHC beam screen

N
o
|

SEY (arb. units)
o

I I
0 100 200 300 400

Primary energy (eV)

o
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| | | | | |
1000 800 600 400 200 0
binding energy (eV)




co-laminated Cu for LHC beam screen

R, Larciprete et al. Ecloud-12 and PR ST: 16 (2013) 011002

e beam

500 eV

1000 800 600 400 200 0
binding energy (eV)
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1.4 H

1.2
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2.2
- SEY decreases also

outside the beam spot




co-laminated Cu for LHC beam screen

R, Larciprete et al. Ecloud-12 and PR.ST: 16 (2013) 011002

as received Cu sample

Cu 3ps3,» Cls Ols | -
_ metal 0-C €
oxide C-C sp3 0-Cu E
©
C-H .
C-0 )
— T T T T T 1 T T T T T 1 — T T T T 1 BO= T T ) T
940 938 936 934 932 930 928292 290 288 286 284 282 538 536 534 532 530 528 0 100 200 300 400
binding energy (eV) Primary energy (eV)

binding energy (eV) binding energy (eV)




co-laminated Cu for LHC beam screen

1.6

E=500 eV
|=5uA

Q=1.2x103 C/mm?

R, Larcipreteet al.
Ecloud-12 and PR. <.

ST: 16 (2013)
01 1 002 56 58 60 62 64 66
y (mm)

Cu 3ps,,

oxide

metal

SEY (arb. units)

940 936 932 0928292 290 288 286 284 282 538 536 534 532 530 528 0 100 200 300 400

binding energy (eV) binding energy (eV) binding energy (eV) Primary energy (eV)

@ the beam spot but also the surrounding area is modified

@ in the beam spot the quantity of surface C increases — graphitic film grov
= -




co-laminated Cu for LHC: fully scrubbed

o o 2.0 H
R, Cimino et al. PRL 8022
109 064801 (2012) .
2 0.0
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-~ SEY and X®S are directly related




e beam induced surface reactions

R, Larciprete et al. Ecloud-12 and PR ST: 16 (2013) 011002

Cu-O dissociation — 0,

- oxide reduction
o

reaction -~ »

sp>—>sp° conversion
c-o dissociation _—~ H,

CO

- the contribution of all electron-induced surface reactions
reduces 0, _from 2.2 to 1.




» The chemical origin of the scrubbing is
now clear: it is due to the Electron
induced surface graphitization!

» It occurs (with small differences) for
many technical surface like Cu, SS, TiN
etc. (noticeably not for Al)

» BUT: it is a phenomenon which

intrinsically need energy to occur: do all

electrons induce it?
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Nature of the Decrease of the Secondary-Electron Yield by Electron Bombardment and its
Energy Dependence
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We performed a combined secondary electron yield (SEY) and x-ray photoelectron spectroscopy study
as a function of the electron dose and energy on a Cu technical surface representative of the LHC
accelerator walls. The electron bombardment is accompanied by a clear chemical modification, indicating
an increased graphitization as the SEY decreases. The decrease in the SEY is also found to depend
significantly on the kinetic energy of the primary electrons. When low-energy primary electrons are
employed (E = 20 eV), the reduction of the SEY is slower and smaller in magnitude than when higher-
energy electrons are used. Consequences of this observation are discussed mainly for their relevance on
the commissioning scenario for the LHC in operation at CERN (Geneva), but are expected to be of interest
for other research fields.
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co-laminated Cu for LHC beam screen

R, Cimino et al. PRL 109 064801 (2012)
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co-laminated Cu for LHC beam screen
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Theo Demma (LAL) simulation :  , Cimino et al PRL 109 064801 (2012)

Table 1: Parameters used for ECLOUD simulations. ' N "

: L —— T, =50ns; N =1.6x10
parameter units value o1l __ 20eV |
beam particle energy GeV 7000 |\
bunch spacing t, ns 25;50; 75 @ [
bunch length m 0.075 % 001 |
number of trains N; - 4 z :
number of bunches per train N, - 72:36:24 — |
bunch gap N, - 8 0.001 ¢ : ) '
no. of particles per bunch 1010 10: 3.0 [ ' '\‘\
length of chamber section m 1 - N
chamber radius m 0.02 0 200 400 600 800
circumference m 27000 E[eV]
primary p hot}o-en}ission yield B 7.98 107 FIG. 3 (color online). Calculated electron energy distribution
maximum SEY 64z - 1.2(0.2)2.0 at the LHC accelerator wall. The number of electrons below and
energy for max. SEY E,, .. eV 237 above 20 eV (dotted line) is nearly equal.

’ with beam parameters enhancing the
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Similar results for Stainless steel samples from RICH@BNL
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dipole chamber of Petra 111 at DESY
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e beam induced surface reactions in AL
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The Surface Science Actors:

® Photoelectron Yield (the number of electrons created after
bombardment of a single photon)

® Photo-reflectivity (the number of photons reflected by the
surface)

And their dependence on:

material, Enenyy, angle, temperature, magnetic freld,
Conditioning etc etc. . ..




Why?

® Not only to study the input parameters used in

simulations of multipacting and e-cloud build-ups,
related instabilities

® But also to simulate and prevent single bunch
instabilities just connected to the mere existence of a
certain density of e in the accelerator chambers.




Y. Suetsugu, KEK
3. Plans for Super KEKB on behalf of KEKB Vacuum Group

e Required electron density to avoid single bunch instability

] K. Ohmi , KEK Preprint 2005-100 (2006)
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* Also for ILC DR, LHC-upgrade etc. the problem of single
bunch instabilities is a very serious one and does not only

depend on the SEY of the accelerator walls nor by the
subsequent e-cloud buildup, but also by the number of primary
photoelectrons directly produced. This number depends on wall

photo-reflectivity (i.e. the number of photons actually hitting
the wall) and by the relative quantum efficiency (PEY)

* We (ILC-collaboration, LHC Upgrade, APS, ANKA etc)
launched an experimental campaign to measure with
Synchrotron Radiation, such values of Photo-reflectivity and
PEY for the different materials of interest.

* LN is leader in this working package.




We performed preliminary measurement and we

intend to continue measuring photon reflectivity
using the reflectometer at BESSY I1 in Berlin.

ECLOUD-12 proceeding and to be submitted to Phys. Rev. Special Topics

SOFT X-RAY REFLECTIVITY: FROM QUASI-PERFECT MIRRORS TO ACCELERATOR WALLS
F. Schdfers, Institute for Nanometre Optics and Technology, HZB BESSY-I1, Berlin, Germany

R. Cimino, LNF /INFN, Frascati, Italy
Abstract

Reflection of light from surfaces is a very common, but complex phenomenon not only in science and
technology, but in every day life. The underlying basic optical principles have been developed within the last 5
centuries using visible light available from the sun or other laboratory light sources. X-rays were detected in
1895, and the full potential of soft- and hard-x ray radiation for material analysis and characterisation is
available only since to the advent of synchrotron radiation sources some 50 years ago. On the other hand
high-energy machines and accelerator-based light sources suffer from serious performance drop or limitation
due to the interaction of the light with the accelerator walls, thus producing photoelectrons which in turn
interact with the accelerated beam. Thus the suitable choice of accelerator materials and its surface coatz g
which détermmes its x-ray optical behaviour is of utmost importance to achieve ulizmate e

. Basic p nczplés and examples on reflectivity are given here. —e




Photon energy:
20-1600 eV

a low grating (150 I/
mm)
is used for 20-150 eV

a high grating (1228.1
[/mm) is used for
130-1600 eV

Samples: aluminum,
copper, and stainless
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Figure 2 Reflectivity R;and R, of a perfect Au-coating

Figure 3: Fresnel-reflectivity of a smooth Fe surface as

F. SCﬁflﬁfS dnd- R: C’lml'no function of photon energy for various incidence angles.
ECLOUD-12 proceeding and to be submitted to Phys. Rev. Special Topics

Napoli 12-2-2013

as function of incidence angle in the UV and soft x-ray

range.
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Reflectometer at BESSY 11
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Samples and Sample holder

During the preliminary beam period, we measured different samples:

- as example here we show CU from LHC beam screen

The samples are isolated from the sample holder by Kapton to also measure the
photo yield.
F —

F. Schdfers and R, Cimino
ECLOUD-12 proceedi'tz_g and to be submitted to Phys. Rev. Special Topics =)
INFN
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Reflectivity from LHC Cu
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Figure 10: Reflectivity of LHC-Cu sample
representative of the flat part of the beam screen, as
function of photon energy for various incidence angles

© and emission angle 2 ©.

Figure 14: Normalized Reflectivity of LHC- Cu Flat
sample as function of incidence angles ® and emission

angle 20, for two photon energies of 150 and 300 eV,
respectively.

and to be submitted to Phys. Rev. Special Topics




Roughness produce scatter light
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Figure 11: Normalized reflectivity of LHC- Cu Flat ~ Figure 12: Scattering from a quasi-perfect Si mirror
)ample as function of emission angle 26, for a given  gurface taken at 5° incidence angle and at 124 eV (10
>hoton energy hv=150 eV and incidence angle of ®=3°. nm). Data taken with a 4x4mm photodiode

ifers and R, Cimino
proceeding and to be submitted to Phys. Rev. Special Topi
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V' We measure and feed material parameters (R, PY, and SEY) into simulations.
V' Understand their profound nature to:
v’ Optimize chemical (mechanical) process to reduce their detrimental influence on beam.

v’ Search for new material / coatings with intrinsically “good” parameters.
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C films on polycristalline Cu

a-C filims C film thickness 2-3 nm
magnetron sputtering @ RT
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arciprete, A. di Trolio and R, Cimino: in preparation



C films on polycristalline Cu

C1s valence band hv=40.8 eV . 1.17
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C films on polycristalline Cu
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the graphitization of the C films corresponds to a lower SEY

arciprete, A. di Trolio and R, Cimino: in preparation




8.95 23.57 28.28 70.

- - e =~
- -
- -
g ~
7 ML wy S
rd ° N N\ .
p
/7 N
/ \
/
/ 500 85.91° \
______ S 79.98° \
20.9g° Y 70.53°
______ ) R
\ ——t /
\ - -~ /
\ /’ \\ /
! \ / \ /
\ 7’ \ /s
\_\ \ //

p—
SEY of groove surface

0 500 1000 15

Energy (eV) /)
INFN



Impedance enhancement factor

(Code : Finite Element Method, PAC07 THPASO067, L Wang)

Z groovedsurface f H dS [\/\/\/\
n= 7
smoothsurface

The total impedance enhancement= n * percentage of grooved surface

p=1.25mm (period) A MF-

d=2.5mm (depth) _ m
t=0.125mm (thickness) 17 — 1°64 W |

gl

a) b)

p — ]. . 2 5 mm Figure 1: a)—detail of the grooved vacuum chamber wall;
n = dimensions shown are period p and fin thickness #; b)—
[ J

d=2.5mm

=0.25mm




Conclusion

» Vacuum for accelerators is becoming a very
multidisciplinary science!

> There is still a lot to do and to learn

> Synergic efforts, dedicated Surface, Material
and Vacuum science laboratory are required
to reach desired understanding and
performances.
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