

La fisica delle stelle

Lucio Gialanella Dipartimento di Matematica e Fisica Seconda Università di Napoli and INFN – Napoli

Come vediamo?

In alternativa

Sezione d'urto di interazione

$$m_1\boldsymbol{v_1} + m_2\boldsymbol{v_2} = m_1\boldsymbol{v_0}$$

 $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_1v_2^2 = \frac{1}{2}m_1v_0^2$ Urti elastici

Modello atomico di Thomson

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

http://phet.colorado.edu/en/simulation/rutherford-scattering

In Europa ci sono circa 250 milioni di auto

Modello atomico di Rutherford

$$R_N \approx 1.22 \ A^{1/3} \ 10^{-15} \ m$$

 $M_N \approx \ A \cdot 2 \cdot 10^{-27} \ kg$

$$\rho_N = \frac{M_N}{\frac{4}{3}\pi R_N^3} \approx \frac{2 \cdot 10^{-27}}{8 \cdot 10^{-45}} \frac{kg}{m^3} \approx 2.5 \ 10^{17} \frac{kg}{m^3}$$

Circa 30 milioni di anni

300-400 milioni di anni

4.5 miliardi di anni

11 miliardi di anni

$$E_0 = 1.22 (Z_1^2 Z_2^2 \mu T_6^2)^{1/3} \text{ keV}$$

Sole : T₆ = 15 10⁶ K

reaction	E ₀ (keV)	Integral	
p+p	5.9	7 10 ⁻⁶	
α+ ¹² C	56	5.9 10 ⁻⁵⁶	
¹⁶ O+ ¹⁶ O	237	2.5 10 ⁻²³⁷	

→Fasi separate

$$\longrightarrow$$
 10⁻²¹ barn < σ < 10⁻⁹ barn

Diagramma HR per ammassi globulari

HST - WFPC2

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee

STScI-PRCC NASA, ESA, and J. Hester (Arizona State University)

STScI-PRC05-37

Fondo dovuto a raggi cosmici e Radioattività naturale

0.5 Counts/s

RMS : working principle

Recoil detection

Soppressione del fascio incidente Separatore: 10⁻¹⁰-10⁻¹¹ Rivelatore : 10⁻³-10⁻⁶

3MV Pelletron High intensity stable and radioactive (^{7,10}Be) ion beams (possible ²⁶Al) Plans: ⁷Be(p, γ)⁸B ¹²C(α , γ)¹⁶O ¹⁶O(α , γ)²⁰Ne ³³S(p, γ)³⁴Cl ^{14,15}N(α , γ)^{18,19}F SHE in nature

Alcuni esempi delle metodologie nucleari sviluppate nelle ricerca di base

