Monte Carlo simulations and data analysis technics for high energy neutrino detectors

ROSA CONIGLIONE

LABORATORI NAZIONALI DEL SUD –INFN CATANIA

Lay-out

2

- Introduction
 - The neutrino telescope
- Detection principle
 - The detection principle
 - Backgrounds
- The Monte Carlo simulation
 MC codes description
- The reconstruction codes
 - Track reconstruction
 - Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - Effective neutrino area
 - Sensitivity and discovery potential

Lay-out

3

- Introduction
 - The neutrino telescope
- Detection principle
 - The detection principle
 - Backgrounds
- The Monte Carlo simulation
 O MC codes description
- The reconstruction codes
 Track reconstruction
 Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - o Effective neutrino area
 - Sensitivity and discovery potential

The high energy neutrino telescopes

Array of optical sensors to detect neutrinos of extraterrestrial origin Detection of the Cerenkov light produced by the particles

The faint expected fluxes and the low neutrino detection probability

Detector with large volume (km3) installed in deep water or ice

Idea suggested by Markov in the '60 (to use the "beam" of atmospheric neutrinos)

High energy means -> from 10^2 GeV to 10^8 GeV

The neutrino observation can give information on:

- ✓ Origin of Cosmic Rays of high energies (astrophysics, cosmology and particle physics)
- ✓ Production mechanism of high energy gammas (hadronic e/o leptonic mechanisms)
- ✓ Properties and production mechanism in the core of sources

The observation of neutrinos is connected with the already observed gamma-ray fluxes in near low density sources and high not known high density sources.

The international context

First attempt the Dumand project – Detector located in Hawaii in the '90 -> failed project

IceCube – South Pole 8 86 strings 60 PMTs each at the South Pole. Volume about 1km³. Depth 2500m **Detector Completion Dec 2010** IceCube Lab IceTop 81 Stations, each with 2 keTop Cherenkov detector tanks 2 optical sensors per tank 324 optical sensors 50 m I IC59 IceCube Array 86 strings including 8 DeepCore strings 80 optical sensors on each string C79 5160 optical sensors

December, 2010: Project completed, 86 strings DeepCore 9 strings (2006) strings-spacing optimized for lower energies 480 optical sensors 22 strings (2007) Eiffel Tower 324 m 40 strings (2008) 59 strings (2009) 79 strings (2010) 86 strings (2011) Bedrock

1450 m

2450 m

2820 m

0

4

First astrophysical flux from IceCube

• Flux of astrophysical origin detected at 5.7σ .

best-fit per-flavor astrophysical(E⁻²) flux in the energy range of 60 TeV – 3 PeV $E^{2}\Phi(E) = 0.95 \pm 0.3 \times 10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹

consistent with E⁻²

- indication of a cutoff around 2 PeV above which 4.1 events would be expected from a flux at our best-fit level
- The range of best fit slopes of -2.0 to -2.3.

19

Not known the origin

ANTARES – Toulon (France)

Depth 2470m

•12 lines of 75 PMTs (885 total)

- •1 line for Earth and
- Marine sciences (IL07)
- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs

Takes data in the complete configuration since 2008. At the moment is the largest telescope in the Mediterranean sea

Status: funds only for Phase-1

Phase1 -> 8 towers + 24 strings in Capo Passero - construction phase started Phase 1.5 - 2 blocks of 155 DUs (one in capo Passero and the second not yet defined)

Lay-out

13[°]

- Introduction
 The neutrino telescope
- Detection principle
 - The detection principle
 - Backgrounds
- The Monte Carlo simulation
 O MC codes description
- The reconstruction codes
 Track reconstruction
 Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - o Effective neutrino area
 - Sensitivity and discovery potential

Detection principle

- The neutrinos interact in the water/ice or rocks around the detector and produce secondary particles that emit Cerenkov light in a cone at 42° w.r.t the particle direction.
- Light detected by means of optical sensors (photomultipliers)
- From the arriving time of photons and from the positions of the photomultipliers is possible to determine the direction of the secondary particles. If muons, generated by v_{μ} , the precision in the reconstruction of the direction is very high (0.1°-0.2°). High energy neutrinos are collinear with muons

The Cerenkov emission

The number of Cherenkov photons N emitted by a charged particle of charge ze per unit wavelength interval $d\lambda$ and unit distance travelled dx

$$\frac{d^2 N}{d\lambda dx} = \frac{2\pi\alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2} \right) \qquad v > \frac{c}{n}$$

High numbers of photons at low wavelength (blue)

The number of photons in the wavelength between 300 and 600 nm and

distance unit:

$$\frac{dN}{dx} = 76500 \cdot \sin^2 \theta_{ch} \approx 34500 \, fotoni \, / \, m$$

• Photons emitted at θ_{ch} w.r.t the track direction

$$\cos\theta_{ch} = \frac{1}{\beta n}$$

$$n = 1.35$$
 $\theta_{ch} = 42.2^{\circ}$

Background of atmospheric muons and neutrinos

16

From the interaction of Cosmic Ray with the atmosphere:

- Atmospheric muons only down-going (2 π) but
- Atmospheric neutrinos from all the directions (4 π)

Even if the detectors are shielded by the water/ice the atmospheric muon flux is high Search for extraterrestrial up-going neutrinos

Lay-out

17

- Introduction
 The neutrino telescop
- Detection principle
 The detection principle
 Backgrounds
- The Monte Carlo simulation
 O MC codes description
- The reconstruction codes
 Track reconstruction
 Cases do reconstruction
 - Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - Effective neutrino area
 - Sensitivity and discovery potential

Generation of atmospheric muons

Hadonic Gscade

CORSIKA Full air shower simulation

Based on known models

The final events can be weighted- choose all the CR models (spectrum and composition)

Large computing time

Mupage Analytical approximation

High live time on large detector possible

Assumptions and approximation... not possible to change the CR primary composition

Fast

11

CORSIKA Cosmic Ray Simulation for Kascade

Full air shower MC simulation.

- Cross section for the interaction of primaries and secondaries.
- Knowledge of the composition of the interaction medium (Atmospheric properties tunable ... 20 parameters to set the atmosphere)
- Lifetimes and decay channels for all the particles
- Energy losses of secondaries
- ✓ Air showers propagated up to the sea level.
- ✓ Primaries up to A=56
- ✓ CR composition models assigned aposteriori weighting the events.

Code well maintained and compared with experimental data

CORSIKA Cosmic Ray Simulation for Kascade

The interaction models

 $\checkmark Based on data from beam experiments – no data at high energies-> values extrapolated$

✓Collider experiments cover central region better than forward region -> values extrapolated

 \checkmark Collider data does not cover all the projectile-target possible combination -> values extrapolated

✓ Many uncertainties in shower simulation for primary energies above a few TeV

✓ Options for the interaction models (high energy ->VENUS, QJSJET, DPMJET, SIBYLL, low energy-> GHEISHA).

MUPAGE

Based on analytical parameterization of HEMAS (full air shower simulation). Considered the muon bundle Muons up to a cilinder around the detector

• Inputs:

- Depth (1500 m <D<5000 m)
- o minimum bundle energy
- Angular ($0^{\circ} < \theta < 85^{\circ}$)
- Minimum muon energy at the cilinder

• Outputs

- Energy and direction of each muon in the bundle
- Live time (flux)

Atmospheric neutrinos

29

Phys. Rev. D83 012001 (2011) Phys. Rev. D84 082001 (2011)

Vetoing the down-going muon we reduce the atmospheric neutrino background:

- depends on the arrival direction -> zenith angle
- depends on depth

Neutrino interaction

• Neutrino interaction and flavours:

- Charged Current v_{l} , N ->l + hadrons
- Neutral Current $v N \rightarrow v + hadrons$

GENHEN

38

GENHEN generates al flavours neutrinos (antineutrinos) (v_e, v_μ, v_τ)

• Main inputs

- neutrino energy range (2 GeV< E_v <10⁸ GeV)
- o neutrino angular range
- o neutrino flavour
- Generation spectrum

Outputs

- ✓LEPTO neutrino interaction
 ✓CTEQ6 structure function
 ✓PYTHIA/JETSET for hadronization
 ✓DIS+RES+QE interaction (RES +QE for the low energies)
- Charged particles at the interaction vertex (Energy, angle and type)
- Muons propagated up to the can level
- Weight of the events

Event weights

41

• A posteriori it is possible to weight the events to change the generation spectrum

$$W_{event} = \frac{d\phi^{\text{mod}\,el}}{dE_{\nu}d\Omega dSdt} / \frac{d\phi^{\text{generation}}}{dE_{\nu}d\Omega dSdt} = W_{\text{generation}} \cdot \frac{d\phi^{\text{mod}\,el}}{dE_{\nu}d\Omega dSdt}$$

$$W_{\text{generation}} = \frac{V_{\text{gen}} \cdot I_{\theta} \cdot I_{E} \cdot E^{\gamma} \cdot \mathcal{O}(E_{\nu}) \cdot \mathcal{O}N_{A} \cdot P_{\text{Earth}}(E_{\nu}, \theta_{\nu})}{N_{\text{total}}}$$

$$M_{\text{generation}} = \frac{V_{\text{gen}} \cdot I_{\theta} \cdot I_{E} \cdot E^{\gamma} \cdot \mathcal{O}(E_{\nu}) \cdot \mathcal{O}N_{A} \cdot P_{\text{Earth}}(E_{\nu}, \theta_{\nu})}{N_{\text{total}}}$$

$$M_{\text{bolume}} = \frac{V_{\text{gen}} \cdot I_{\theta} \cdot I_{E} \cdot E^{\gamma} \cdot \mathcal{O}(E_{\nu}) \cdot \mathcal{O}N_{A} \cdot P_{\text{Earth}}(E_{\nu}, \theta_{\nu})}{N_{\text{total}}}$$

$$M_{\text{bolume}} = \frac{V_{\text{gen}} \cdot I_{\theta} \cdot I_{E} \cdot E^{\gamma} \cdot \mathcal{O}(E_{\nu}) \cdot \mathcal{O}N_{A} \cdot P_{\text{Earth}}(E_{\nu}, \theta_{\nu})}{N_{\text{total}}}$$

$$M_{\text{total}} = \frac{V_{\text{gen}} \cdot I_{\theta} \cdot I_{E} \cdot E^{\gamma} \cdot \mathcal{O}(E_{\nu}) \cdot \mathcal{O}N_{A} \cdot P_{\text{Earth}}(E_{\nu}, \theta_{\nu})}{N_{\text{total}}}$$

The GENHEN output

(42)

													_
	start	run:	1										
	cut r	nu: 0.	100E+03 0	.100E+09-	0.100E+01 0.1	00E+01							
	nhyei	C.S. 6	ENHEN 7	1-120213	140507 2345								
	drow	logi V			140307 2343								
	urawa			2001	•	•							
	seed	GENH	IEN 3	2001	6	0							
	spect	rum:	-2.00										
	PDF:		4 58	3									
	model		1	3	1 1	12							
	genhe	encut:	0.200E+04	4 0.000E+	-00								
	nuflu	IX:	0	3	0 0.500E+00	0.000E+00	0.100E+01	0.300E+01					
	keut		2										
	targe	.t. iso	scalar										
	Vener	. AEE	Scatar										
	Apara	illi: VFF	4166										
	sourc	:emode:	dittuse										
	usede	ttile:	true										
	detec	:tor: /	sps/km3net	t/users/c	oniglio/antar	es_seawiet,	/detectors	/hex115_3inc	h31pm120_	1836.d	et 11		
	can:	-41	0.69 5	16.71	881.43								
	genvo	ol: -2	5938.52	3230.71	30319.79 0.	8424E+14	0.1000E+10						
	end_e	event:											
				· · ·									
start_event		3	1										
neutrino:	1	177.11	6 -623.5	66 1	.810 -0.711810	0.578722 -	-0.398005	0.291644E+03	0.0 0.	317103	0.102748	-1 14	2
track_in:	1	177.11	6 -623.5	66 1	.810 -0.713400	0.585813 -	-0.384558	0.261678E+03	0.0	6			
track_in:	2	177.11	L6 -623.5	66 1	.810 -0.716518	0.456275 -	-0.527651	0.211605E+00	0.0	8			
track_in:	3	177.11	L6 -623.5	66 1	.810 -0.694297	0.463015 -	-0.550971	0.907137E+01	0.0	13			
track_in:	4	177.11	L6 –623.5	66 1	.810 -0.686097	0.491386 -	-0.536481	0.721160E+00	0.0	1			
track_in:	5	177.11	L6 –623.5	66 1	.810 -0.688330	0.515778 -	-0.510073	0.194797E+02	0.0	1			
track_in:	6	177.11	L6 –623.5	66 1	.810 -0.091070	0.729955 -	-0.677401	0.259629E+00	0.0	8			
track_in:	7	177.11	L6 –623.5	66 1	.810 -0.637166	0.765220 -	-0.091974	0.334419E+00	0.0	9			
track_in:	8	177.11	L6 –623.5	66 1.	.810 -0.759209	0.642193	0.105783	0.260022E+00	0.0	9			
track_in:	9	177.11	L6 –623.5	66 1.	.810 -0.869828	0.389872 -	-0.302325	0.265126E+00	0.0	8			
track_in:	10	177.11	L6 –623.5	66 1.	.810 -0.132410	0.314693	0.939913	0.111240E+00	0.0	1			
track in:	11	177.11	L6 –623.5	66 1.	.810 -0.218302	0.940854	0.259112	0.189856E+00	0.0	1			
track_earth	lepton	1: 1	177.116	-623.5	66 1.810 -	-0.713400 0).585813 -0	.384558 0.2	61678E+03	3.	.06		
track_earth w2list:	lepton	: 1 +37 0.	177.116 8506E+05	-623.50 0.1967E-39	66 1.810 - 9 0.7018E+10	-0.713400 0 0.1000E+01	0.8425E+0	.384558 0.2 3	61678E+03	0.	.06		
track_earth w2list: @ weights:	1 Lepton 0.2389E 0.8424	: 1 +37 0. E+14 <u>6</u>	177.116 .8506E+05 .3366E+ <u>16</u>	-623.50 0.1967E-39 0.5119 <u>E+</u>	66 1.810 - 9 0.7018E+10 11	-0.713400 0 0.1000E+01	0.585813 -0 0.8425E+0	.384558 0.2 3	61678E+03	0.	.06		
track_earth w2list: @ weights: w3list:	1 epton 0.2389E 0.8424 0 <u>0.1</u>	1: 1 +37 0. E+14 0 .521 <u>E-04</u>	177.116 .8506E+05).3366E+16 4 0.5 <u>119E+</u>	-623.50 0.1967E-39 0.5119E+3 11	66 1.810 - 9 0.7018E+10 11	-0.713400 0 0.1000E+01	0.585813 -0 0.8425E+0	.384558 0.2 3	61678E+03	0.	.06		
track_earth w2list: @ weights: w3list: end_event:	lepton 0.2389E 0.8424 0 0.1	: 1 +37 0. E+14 0 .521E-04	177.116 .8506E+05 0.3366E+16 0.5119E+	-623.50 0.1967E-39 0.5119E+3	66 1.810 - 9 0.7018E+10 11	-0.713400 0 0.1000E+01	0.585813 -0 0.8425E+0	.384558 0.2 3	61678E+03	0.	.0 6		

Full simulation based on GEANT

Code based on light tables

Each photon is tracked

Very slow: not possible to simulate high energy events on large detector

Used to generate the parameterizations and verify the results Binning effect and light propagation in medium based on models

••

Very fast

The KM3 code

GEN HIT e KM3 used in ANTARES and KM3NeT

- GEN e HIT generate light tables (based on full simulation GEANT). Optical water properties and PMTs characteristic taken into account
- KM3 propagates muons and generates, from the light tables, photons and generate PMT hits

• Main inputs

- Files optical water properties (absorption length and scattering length as a function of the wavelength)
- PMT properties (TTS, $QE(\lambda)$, photocatode area)
- Optical properties of gel and glass of bentosphere

• Outputs

• Hits with PMT identifier, arrival time of photons and charge

The light tables

GEN e HIT based on GEANT.

GEN generates a photon field at different radii from a segment of the track or E.M. shower. Water properties taken into account

HIT reads GEN output and generates tables with a photon probability distribution around the PMT.

Tables recreated only if water properties and PMT characteristics change

Problem of binning and interpolation

Photon direction Shell Bin Optical Module Optical Module Optical Module Optical Module Optical Module OM orientation (om_dir)

Alghero - 26-30 May 2014

Not easy for ice

Water/ice optical properties

• The water/ice "transparency" is measured by the absorption length L_{abs} and the scattering length L_{sca}

The attenuation length is :

Scattering on molecules (Rayleigh scattering) or on particles (Mie scattering)

Used also the effective scattering length

$$L_{sca}^{eff} = \frac{L_{sca}(\lambda)}{1 - \left\langle \cos \theta_{scat} \right\rangle}$$

Water vs ice

- Water -> homogeneous medium:
 - Baikal water: L_{abs}=22-24m, L_{scat}=30-50m, low background
 - Sea water: L_{abs}=50-70m, L_{scat}=55m
- Ice ->not homogeneous medium :

Scattering coefficient very different (up to a factor 7) $< L_{scatt} > \approx 30 \text{ m}$

Absorption coefficient differs of a factor 3

PMT: the main characteristics

51

• Quantum efficiency

• High QE required in the blue wavelength region

• Angular acceptance

• Good precision required at backward angles

• Timing

• Good timing required (effect on the arrivl photon tim angular track resolution)

Transit Time Spread 1 ns (sigma)

• Photocatode area

Angular PMT acceptance

- The angular acceptance estimated with GEANT4. Correctness of GEANT4 verified with laboratory measurements
 - Geometry

PMT angular acceptance

The KM₃ OUTPUT

start_e	event:	3	1									
neutrin	10:1	177.116 -6	23.566	1.810 -0.7	11810 0.57	8722 -0.39	98005	0.2916	44E+03 0.0	0.317103 0.10274	48 -1 14	2
track_e	arthlept	on: 1 177	.116 –	623.566 1	.810 -0.713	400 0.58	5813	-0.384558	0.261678E+	-03 0.0 6		
w2list:	0.2389E	+37 0.8506E	+05 0.1	967E-39 0.701	8E+10 0.10	00E+01 0.	.8425	E+03				
weights	s: 0.8424	E+14 0.3366	E+16 0.	5119E+11								
w3list:	0 0.15	21E-04 0.51	19E+11									
track_i	in:	1 177.116	-623.	566 1.810	-0.713400	0.585813	-0.3	84558 0	.261678E+03	0.00 5 8	369.099	
tracki	in: 1	2 177.116	-623.	566 1.810	-0.716518	0.456275	-0.5	27651 0	.211605E+00	0.000000E+00 8		
tracki	in:	3 177.116	-623.	566 1.810	-0.694297	0.463015	-0.5	50971 0	.907137E+01	0.000000E+00 13		
tracki	in:	4 177.116	-623.	566 1.810	-0.686097	0.491386	-0.5	36481 0	.721160E+00	0.000000E+00 1		
tracki	in:	5 177.116	-623.	566 1.810	-0.688330	0.515778	-0.5	10073 0	.194797E+02	0.000000E+00 1		
tracki	in:	6 177.116	-623.	566 1.810	-0.091070	0.729955	-0.6	77401 0	.259629E+00	0.000000E+00 8		
track	in:	7 177.116	-623.	566 1.810	-0.637166	0.765220	-0.0	91974 0	.334419E+00	0.000000E+00 9		
tracki	in:	8 177.116	-623.	566 1.810	-0.759209	0.642193	0.1	05783 0	.260022E+00	0.000000E+00 9		
track	in:	9 177.116	-623.	566 1.810	-0.869828	0.389872	-0.3	02325 0	.265126E+00	0.000000E+00 8		
track	in: 1	0 177.116	-623.	566 1.810	-0.132410	0.314693	0.9	39913 0	.111240E+00	0.000000E+00 1		
track	in: 1	1 177.116	-623.	566 1.810	-0.218302	0.940854	0.2	59112 0	.189856E+00	0.000000E+00 1		
track i	in: 1	2 177.098	-623.	555 1.797	-0.716518	0.456275	-0.5	27651 0	.374415E-01	0.814696E-01 99		
track i	in: 1	3 175.562	-622.	530 0.577	-0.694297	0.463015	-0.5	50971 0	.461961E+01	0.746619E+01 99		
track i	in: 1	4 176.607	-623.	201 1.412	-0.686097	0.491386	-0.5	36481 0	.721160E+00	0.247639E+01 99		
track i	in: 1	5 175.752	-622.	544 0.799	-0.688330	0.515778	-0.5	10073 0	.194797E+02	0.661037E+01 99		
track i	in: 1	6 177.112	-623.	536 1.782	-0.091070	0.729955	-0.6	77401 0	.623910E-01	0.135488E+00 99		
track i	in: 1	7 177.082	-623.	551 1.798	-0.869828	0.389872	-0.3	02325 0	.652469E-01	0.131190E+00 99		
track i	in: 1	8 177.111	-623.	554 1.846	-0.132410	0.314693	0.9	39913 0	.111240E+00	0.127790E+00 99		
track i	in: 1	9 177.064	-623.	340 1.872	-0.218302	0.940854	0.2	59112 0	.189856E+00	0.800478E+00 99		
total	its:	19										
hite	1	4801	1.00	645.74	5	1	1	645.74				
hite	2	11014	1 00	1780 08	Ē	1	-	1780 08				
bit.	2	11000	1 00	1766.30	-	-	-	1756 44				
644.	3	10007	1.00	2720.44	2	÷	•	2224 72				
nit:	1	1000/	1.00	2224.72	2	÷.	÷.	2224.72				
nit:	5	25085	1.00	2886.88	5	1	1	2886.88				
hit:	6	25104	1.00	2884.88	5	1	1	2884.88				
hit:	7	326	1.00	1244.84	-5	1	1	1244.84				
hit:	8	4784	1.00	645.15	-5	1	1	645.15				
hit:	9	4826	1.00	708.34	-5	1	1	708.34				
hit:	10	4826	1.00	707.39	-5	1	1	707.39				
hit:	11	16045	1.00	1703.91	-5	1	1	1703.91				
hit:	12	11051	1.00	1758.51	-5	1	1	1758.51				
hite	13	11063	1.00	1762.66	-5	1	1	1762.66				
hit	14	24968	1.00	3332.24	-5	1	1	3332.24				
hite	15	25961	1 00	2040 61	-5	1	1	2040 61				
1.2.4.2	15	25001	1.00	2940.01	-5	-	1	2940.01				
11111	16	25097	1.00	2886.97	-5	1	1	2886.97				
hit:	17	1949	1.00	395.79	-3	5	1	395.79				
A hit:	18	7054	1.00	1076.26	-3	1	1	1076.26				
hit:	19	9308	1.00	1511.82	-3	1	1	1511.82				
end_ev	ent:											

The ⁴⁰K and bioluminescence

In sea water telescope photons due to the beta decay of ⁴⁰K are present:

• beta decay of ⁴⁰K presents in the salt.

Rate of about 360 s⁻¹ cm⁻² Baseline of about 40 kHz in8" PMT (0.3 p.e.) And 5 kHz in 3" PMTs

- Bioluminescence from micro-organisms (bacteria)
- Light from macro-organisms bursts of MHz

baseline + bursts

The bioluminescence if present is strongly correlated with the sea current.

The rate in the PMTs

Burst _{>100 kHz} = 1.6%

Algł

MC generation of 40K hits and electronic simulation

KM3NeT uses MODK40 code ->add not correlated in time due to ⁴°K inside a time window Δt (1/2 max crossing time of a muon inside the detector) around the event time window. Not included the bioluminescence

• ANTARES ->adds "run by run" the⁴°K background from the data (minimum bias) (bioluminescence automatically included)

40K Coincidence rate in the multi-PMT

Probability to have time coincident hits in two PMTs inside the Multi-PMT is not negligible

Probability matrix estimated with GEANT4 and included in MODK40

PMT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
2	93																													
3	93	98																												
4	93	35	98																											
5	93	24	35	9 8																										
6	93	35	24	35	9 8																									
7	93	9 8	35	24	35	97																								
8	33	95	26	10	10	26	95																							
9	33	95	95	26	10	10	26	45																						
10	33	26	95	95	26	10	10	8	45																					
11	33	10	26	95	95	26	10	3	8	45											ىك			1						
12	33	10	10	26	95	95	26	8	3	8	45										^	1()	ŧ						
13	33	26	10	10	26	95	95	45	8	3	8	45										•								
14	17	65	28	8	4	8	28	95	95	12	2	2	12																	
15	17	28	65	28	8	4	8	12	95	95	12	2	2	32																
16	17	8	28	65	28	8	4	2	12	95	95	12	2	3	32															
17	17	4	8	28	65	28	8	2	2	12	95	95	12	0	3	32														
18	17	8	4	8	28	65	28	12	2	2	12	95	95	3	0	3	32													
19	17	28	8	4	8	28	65	95	12	2	2	12	95	32	3	0	3	32												
20	4	13	4	1	1	4	13	41	14	1	0	1	14	53	7	0	0	7	53											
21	4	13	13	4	1	1	4	14	41	14	1	0	1	53	53	7	0	0	7	32	_									
22	4	4	13	13	4	1	1	1	14	41	14	1	0	7	53	53	7	0	0	3	32									
23	4	1	4	13	13	4	1	0	1	14	41	14	1	0	7	53	53	7	0	0	3	32								
24	4	1	1	4	13	13	4	1	0	1	14	41	14	0	0	7	53	53	7	3	0	3	32							
25	4	4	1	1	4	13	13	14	1	0	1	14	41	1	0	0	- 7	53	53	32	3	10	3	32	10					
26	1	8	4	1	0	1	4	16	16	4	0	0	3	41	14	1	0	1	14	95	95	12	2	2	12					
27	1	4	8	4	1	0	1	3	16	16	10	0	0	14	41	14	14	0	1	12	95	95	12	10	2	45	45			
28	1	1	4	8	4	1	1	0	3	16	16	3	0	1	14	41	14	14	1	2	12	95	95	12	10	8	45	45		
29	1	1	1	4	ð	4	1	0	0	3	10	10	10	1	1	14	41	14	14	10	2	12	90	95	12	3	ð	40	45	
30	1	1	1	1	4	0	4	10	0	0	4	10	10	14	1	1	14	41	14	12	10	2	12	90	90	45	ు స	ð	45	48
31	1	4	1	0	1	4	ð	10	3	0	0	3	10	14	1	0	1	14	41	95	12	2	2	12	95	45	ð	3	ð	40

MODK40 output

start_event:	3	1								
neutrino: 1	177.116	-623.566	1.	810 -0.711810	0.578722 -0.398005	0.291644E+03	0.0 0.317103 (9.102748 -	-1 14	2
track_earthlept	on: 1	177.116	-623.56	6 1.810 -	0.713400 0.585813 -0	0.261	.678E+03 0.0	6		-
w2list: 0.2389E	+37 0.85	06E+05 0.	1967E-3	9 0.7018E+10	0.1000E+01 0.8425E+	+03				
weights: 0.8424	E+14 0.3	366E+16 0	.5119E+	11						
w3list: 0 0.15	21E-04 0	.5119E+11								
track_in: 1	177.116	-623.566	1.	810 -0.713400	0.585813 -0.384558	0.261678E+03	0.00 5	869.099		
track_in: 2	177.116	-623.566	1.	810 -0.716518	0.456275 -0.527651	0.211605E+00	0.000000E+00 8			
track_in: 3	177.116	-623.566	1.	810 -0.694297	0.463015 -0.550971	0.907137E+01	0.000000E+00 13			
track_in: 4	177.116	-623.566	1.	810 -0.686097	0.491386 -0.536481	0.721160E+00	0.000000E+00 1			
track_in: 5	177.116	-623.566	1.	810 -0.688330	0.515778 -0.510073	0.194797E+02	0.000000E+00 1			
track_in: 6	177.116	-623.566	1.	810 -0.091070	0.729955 -0.677401	0.259629E+00	0.000000E+00 8			
track_in: 7	177.116	-623.566	1.	810 -0.637166	0.765220 -0.091974	0.334419E+00	0.000000E+00 9			
track_in: 8	177.116	-623.566	1.	810 -0.759209	0.642193 0.105783	0.260022E+00	0.000000E+00 9			
track_in: 9	177.116	-623.566	1.	810 -0.869828	0.389872 -0.302325	0.265126E+00	0.000000E+00 8			
track_in: 10	177.116	-623.566	; 1	.810 -0.132410	0.314693 0.939913	0.111240E+00	0.000000E+00	L		
track_in: 11	177.116	-623.566	; 1	.810 -0.218302	0.940854 0.259112	0.189856E+00	0.00000E+00	L		
track_in: 12	177.098	-623.555	; 1	.797 -0.716518	0.456275 -0.527651	0.374415E-01	0.814696E-01 99)		
track_in: 13	175.562	-622.530) (.577 -0.694297	0.463015 -0.550971	0.461961E+01	0.746619E+01 99)		
track_in: 14	176.607	-623.201	. 1	.412 -0.686097	0.491386 -0.536481	0.721160E+00	0.247639E+01 99)		
track_in: 15	175.752	-622.544	L 6	.799 -0.688330	0.515778 -0.510073	0.194797E+02	0.661037E+01 99)		
rack_in: 16	177.112	-623.536	; 1	.782 -0.091070	0.729955 -0.677401	0.623910E-01	0.135488E+00 99			
track_in: 17	177.082	-623.551	. 1	L.798 -0.869828	0.389872 -0.302325	0.652469E-01	0.131190E+00 99)		
track_in: 18	177.111	-623.554	1	1.846 -0.132410	0.314693 0.939913	0.111240E+00	0.127790E+00 99)		
track_in: 19	177.064	-623.340) 1	872 -0.218302	0.940854 0.259112	0.189856E+00	0.800478E+00 99)		
it_raw:	1 1	15	0.34	1891.31						
it_raw:	2 1	34	0.68	3875.70						
it_raw:	3 1	54	0.92	2768.89						
it_raw:	4 2	25	0.58	1979.18						
it_raw:	5 2	36	1.40	-84.08						
hit_raw:	6 2	92	1.21	1387.24						
hit_raw:	7 2	97	0.66	1763.30						
it raw: 1603	63941		9.97	3160.19						
	00044			9200123						

hit_raw:	1604	63942	0.46	2426.83
hit_raw:	1605	63980	1.12	470.19
hit_raw:	1606	64112	0.60	-1188.02
hit_raw:	1607	64113	1.73	-1182.72
hit_raw:	1608	64114	0.76	3221.20
hit_raw:	1609	64116	1.12	2436.70

The trigger

Applied both to date and MC

- Trigger based on time (to reject mainly the 40K background) or on geometrical issues (to reject atmospheric muons and neutrinos)
 - Local coincidence: Ex. 2 or more hits in close PMTs in a time window of 10ns
 - Coincidence in one or more floors/strings.
 - Directional trigger (Galattico center)
 - Veto on first top layers of the detector...

Depends on the detector geometry and on the ⁴⁰K rate

te

Lay-out

61

- Introduction
 The neutrino telescope
- Detection principle
 The detection principlie
 Backgrounds
- The Monte Carlo simulation
 O MC codes description
- The reconstruction codes
 - Track reconstruction
 - Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - Effective neutrino area
 - Sensitivity and discovery potential

What do we need to reconstruct the event direction and energy

63

Different codes and strategies for different events: cascade or track events

Events partially cleaned

Events with soft cuts: on the geometry, on the number of hits....

Photon arrival times and PMT positions in each event

Measurement of the PMT positions in water telescope: the acoustic positioning system

hydrophone Acoustic ransceiver Alghero - 26-30 May 2014 The strings are in continuous movement due to the sea currents

Hydrophones and transceivers located in several floors along the line

In each floor compass and tiltmeters

In ANTARES a measurement each 2 minutes

Position measured with an uncertainty of about 10cm

Muon track reconstruction code

66

Based on the relation between the track direction and photon emission angle present in the Cerenkov emission

All the code are based on the same space-time relation

$$t_{teorico} = t_0 + \frac{1}{c} \left(l - \frac{k}{\tan \theta_c} \right) + \frac{1}{v_g} \left(\frac{k}{\sin \theta_c} \right)$$

To obtain the track direction = 5 parameters θ , ϕ ,x,y,z (x,y,z, pseudo-vertex coordinates) needed.

To obtain the 5 parameters we minimize

$$\Delta t_{res} = t_{teorico} - t_{exp}$$

Muon track reconstruction in KM3NeT

- Code for Multi-PMT based on:
 - hit selection
 - likelihood function maxmization. Likelihood based on Probability Density Function (PDF)

Estimate the track direction looking for the track direction that maximize the probability. The PDF is estimated parameterizing the MC expectation. Some attempts to evaluate analytically

The angular resolution

Angular resolution at the different steps in the reconstruction code

The muon track reconstruction in KM3NeT

• Inputs

- Events (hit_raw) and file with the detector geometry
- File with parameters "hard coded" (threshold, coincidence levels...)

• Outputs

- Track versors and pseudo vertice coordinates of the final track
- Few tracks compatible with the last track
- Parameter errors
- For each track a Λ parameter (related to the reconstruction quality)

Cut on the Λ parameter rejects badly reconstructed tracks

Energy reconstruction

• Based on the following relation

- Number of bits per length unit
 - Number of hits per length unit
 - Total charge
 - Photon distribution
- The energy reconstruction codes need:
 - Reconstructed muon track
 - Already selected hits (no 40K hits)
- Alghero 26-30 May 2014

Muon energy reconstruction

- Different algorithms based on different techniques (E_{μ} >10TeV):
 - Number of hits or Nhit/PMT (proportional to the total number of photons emitted)
 - Charge per track length

 $\left\langle \frac{dE}{dx} \right\rangle \approx \rho = \frac{1}{L_{det}} \sum_{p_{acc}}^{A}$ A charge of the hit L_{det} track length inside the can P_{acc} detector acceptance

- Neural networks (PDF used) PDF estimated using number of hits, positions, charge, time in the learning phase
- Maximization of the likelihood (analytical PDF)

Uncertainty in the reconstructed energy 25% (at high energy) and 40% in log10 (ΔE) for E_u>10TeV (up-going tracks)

• In IceCube maxmization of likelihood. The PDF from a model that takes into account the ice structure

Risolution between $\approx 1\%$ for E_µ>1PeV and 40% in log10(Δ E) for E_µ>20GeV

Cascade energy reconstruction

80

Energy reconstruction

Based on the relation:

$$A[pe] = \sum_{i=1}^{N} a_i R_i \exp(d_i / \tau)$$

auabsorption length a_i amplitude of the hits

Uncertainty in the energy reconstruction of log(E_{shower})<0.36

The reco output

81

hit raw: 1607 64113 1.73 -1182.72hit raw: 1608 64114 0.76 3221.20 hit raw: 1609 64116 1.12 2436.70 hit track fit: 312 4 120 608 611 613 hit_track_fit: 313 8 50 121 191 288 293 463 606 613 hit_track_fit: 311 12 50 118 121 191 288 289 293 457 463 606 611 613 hit track fit: 314 10 50 118 121 191 289 293 457 463 606 613 more_fitinf: 313 6 0 0 more_fitinf: 311 6 0 0 more fitinf: 314 0 0.999961 0.999966 0.999995 0 0 0 5.56945e-07 0.915147 0.0 0.317103 0.102748 -1 14 2 neutrino: 1 177.116 -623.566 1.810 -0.711810 0.578722 -0.398005 0.291644E+03 total_hits: 1609 track_earthlepton: 1 177.116 -623.566 1.810 -0.713400 0.585813 -0.384558 0.261678E+03 0.0 6 track_fit: 1000 -413.19 -139.119 -314.757 -0.713914 0.587038 -0.381724 0.460143 2749.72 1 0 1.91726 0 3 track fit: 1001 -420.639 -132.994 -318.74 -0.713914 0.587038 -0.381724 2.04405 2784.53 1 8.51688 1.91726 11.5228 3 track fit: 1002 -420.639 -132.994 -318.74 -0.713914 0.587038 -0.381724 2.04405 2784.53 1 8.51688 1.91726 11.5228 3 track_fit: 312 -306.968 -223.137 -244.238 -0.710385 0.585987 -0.389837 0 2324.68 74714.2 0 0 0 0 track fit: 313 179.151 -622.546 -1.13179 -0.718044 0.583906 -0.37877 0 0 11.0326 0 4.07466 0 0 track_fit: 311 179.103 -622.888 -0.153263 -0.717825 0.583446 -0.379892 0 0 -990.8 0 3.35908 0 0 track fit: 314 175.322 -623.041 -0.0841091 -0.713914 0.587038 -0.381724 -9999 0 45.9647 10 0 0 0 track_fitter: 312 -306.968 -223.137 -244.238 1.97125 2.45186 0 0 37704.2 25655.4 11354.7 74714.2 0 track fitter: 313 179.151 -622.546 -1.13179 1.95926 2.45886 0.740392 1.37512 1.02786 0.00254529 0.00293301 11.0326 3.49563 track fitter: 311 179.103 -622.888 -0.153263 1.96048 2.4591 0.768795 0.915929 0.529006 0.00149109 0.00227426 -990.8 1.70983 track fitter: 314 175.322 -623.041 -0.0841091 1.96246 2.45341 2.97548 3.89709 1.6335 0.00413976 0.0105666 45.9647 26.7092

Lay-out

82

- Introduction
 The neutrino telescope
- Detection principle
 The detection principle
 Backgrounds
- The Monte Carlo simulation
 O MC codes description
- The reconstruction codes
 Track reconstruction
 - Cascade reconstruction
- On the performance of the telescope: relevant quantities
 - Effective neutrino area
 - Sensitivity and discovery potential

The effective neutrino area Only from MC

The effective neutrino area

84

• Given a source flux the expected number of event in the detector can be calculated:

$$N_{\mu} = \iint A_{eff}^{\nu} (E_{\nu}, \theta_{\nu}) \cdot T \cdot \underbrace{d\phi_{\nu}}{dE_{\nu} d\theta_{\nu}}$$
Source spectrum
$$\overset{E_{\nu}^{-2}}{=} \underbrace{E_{\nu}^{-\gamma} \exp\left(-\frac{E_{\nu}}{E_{c}}\right)}$$
Numero di events
at the detector
$$Neutrino effective area$$

$$A_{eff}^{\nu} (\theta_{\nu}, E_{\nu}) = V_{eff} (\theta_{\nu}, E_{\nu}) \cdot (\rho N_{A}) \cdot \sigma(E_{\nu}) \cdot P_{earth} (\theta_{\nu}, E_{\nu})$$

$$\overset{V}{=} \underbrace{P_{eff}^{\nu} (\theta_{\nu}, E_{\nu}) - P_{eff}^{\nu} (\theta_{\nu}, E_{\nu}) \cdot (\rho N_{A}) \cdot \sigma(E_{\nu})}_{Number of nucleons on the target}$$

$$\overset{V}{=} \underbrace{P_{earth}^{\nu} (\theta_{\nu}, E_{\nu})}_{P_{earth}^{\nu} (\theta_{\nu}, E_{\nu})}$$

WARNING: The neutrino effective area depends on the event selection : Es. Triggered events, reconstructed events, with the analysis cuts....

Hard to compare the performance of a detector comparing the effective area.

Source search

• MC after the reconstruction

- ο θ , ϕ ,T-> δ ,RA (equatorial coordinate)
- θ,φ,T->b,l (galactic coordinate)
 T random

Events up-going with the cuts

Dati after the reconstruction

- ο θ , ϕ ,T-> δ ,RA (equatorial cooridnate)
- θ, ϕ, T ->b,l (galactic coordinate)
- T absolute time of the events

Events up-going with the cuts

Source search

90

Search of events of neutrinos from an astrophysics source

- Statistical methods applied
 - Binned method
 - Full sky search : the sky is divided in bins and in each bin an excess of events is searched.
 - Point search: for a fixed declination (known candidate source) an excess of events is searched around the known declination
 - Unbinned method
 - Full sky search: search on the full sky cluster of events and a comparison between the probabilities to have a signal or background are compared
 - Point search: around the fixed declination (known source) a comparison between the probabilities to have a signal or background are compared

Sensitivity and discovery potential

DEFINITIONS

91

- Sensitivity: is the average upper flux limit one would get from an ensemble of experiments with the expected background and no true signal (theoretical models can be discarded if above the flux limit)
- **Discovery potential**: source flux required to observe, with a fixed probability, a certain number of events with a fixed value of significance above a background.
- A source can be declared "discovered" if a certain number of events are detected with a significance of 5σ above the estimated background.

