
Interaction with the
Geant4 kernel

Luciano Pandola
INFN-LNGS and LNS

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part I: The main
ingredients

Optional user classes - 1
 Five concrete base classes whose virtual
member functions the user may override to
gain control of the simulation at various
stages

 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has
a dummy implementation (not purely virtual)

 Empty implementation: does nothing

e.g. actions to be
done at the
beginning and end
of each event

Optional user classes - 2

 The user may implement the member
functions he desires in his/her
derived classes
 E.g. one may want to perform some action at
each tracking step

 Objects of user action classes must
be registered to the G4(MT)RunManager
via the ActionInitialization
runManager->SetUserAction(new
MyActionInitialization);

MyActionInitialization (MT
mode)

void MyActionInitialization::Build() const
{
 //Set mandatory classes
 SetUserAction(new MyPrimaryGeneratorAction()MyPrimaryGeneratorAction());
 // Set optional user action classes
 SetUserAction(new MyEventAction()MyEventAction()));;
 SetUserAction(new MyRunAction()MyRunAction()));;
}

void MyActionInitialization::BuildForMaster() const
{
 // Set optional user action classes
SetUserAction(new MyMasterRunAction()MyMasterRunAction()));;
}

 Register thread-local user actions

 Register RunAction for the master

Geant4 terminology: an
overview

 The following keywords are often
used in Geant4

 Run, Event, Track, Step
 Processes: At Rest, Along Step,
Post Step

 Cut (or production threshold)

The Run (G4Run)
 As an analogy with a real experiment, a
run of Geant4 starts with ‘Beam On’

 Within a run, the User cannot change
 The detector setup
 The physics setting (processes, models)

 A Run is a collection of events with the same
detector and physics conditions

 At the beginning of a Run, geometry is
optimised for navigation and cross section
tables are (re)calculated

 The G4RunManager class manages the processing
of each Run, represented by:

 G4Run class
 G4UserRunAction for an optional User hook

The Event (G4Event)
 An Event is the basic unit of simulation in
Geant4

 At the beginning of processing, primary tracks
are generated and they are pushed into a stack

 A track is popped up from the stack one-by-one
and ‘tracked’

 Secondary tracks are also pushed into the stack
 When the stack gets empty, the processing of the
event is completed

 G4Event class represents an event. At the end of
a successful event it has:

 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as outputs)

 G4EventManager class manages the event
 G4UserEventAction is the optional User hook

The Step (G4Step)
 G4Step represents a step in the particle
propagation

 A G4Step object stores transient information
of the step
 In the tracking algorithm, G4Step is updated
each time a process is invoked

 You can extract information from a step
after the step is completed
 Both, the ProcessHits() method of your
sensitive detector and UserSteppingAction()
of your step action class file get the
pointer of G4Step

 Typically , you may retrieve information in
these functions (for example fill histograms
in Stepping action)

The Track (G4Track)
 The Track is a snapshot of a particle and it is
represented by the G4Track class

 It keeps ‘current’ information of the particle
(i.e. energy, momentum, position, polarization, ..)

 It is updated after every step
 The track object is deleted when

 It goes outside the world volume
 It disappears in an interaction (decay, inelastic
scattering)

 It is slowed down to zero kinetic energy and there
are no 'AtRest' processes

 It is manually killed by the user
 No track object persists at the end of the event
 G4TrackingManager class manages the tracking
 G4UserTrackingAction is the optional User hook

Run, Event and Tracks

 One Run consists of
 Event #1 (track #1, track
#2,)

 Event #2 (track #1, track
#2,)


 Event #N (track #1, track
#2,)

Example of an Event and
Tracks

 Tracking order follows ‘last in first out’ rule:
T1 -> T4 -> T3 -> T6 -> T7 -> T5 -> T8 -> T2

(ParentID = 1)
(ParentID = 3)

Example:
retrieving information from
tracks

The Step in Geant4

 The G4Step has the information about the two points
(pre-step and post-step) and the ‘delta’
information of a particle (energy loss on the step,
.....)

 Each point knows the volume (and the material)
 In case a step is limited by a volume boundary, the
end point physically stands on the boundary and it
logically belongs to the next volume

 G4SteppingManager class manages processing a step;
a ‘step’ in represented by the G4Step class

 G4UserSteppingAction is the optional User hook

The G4Step object
 A G4Step object contains

 The two endpoints (pre and post step) so one
has access to the volumes containing these
endpoints

 Changes in particle properties between the
points

 Difference of particle energy, momentum,
 Energy deposition on step, step length, time-of-flight, ...

 A pointer to the associated G4Track object
 G4Step provides many Get methods to access
these information or object istances
 G4StepPoint* GetPreStepPoint(),

The geometry boundary

 To check, if a step ends on a boundary, one
may compare if the physical volume of pre
and post-step points are equal

 One can also use the step status
 Step Status provides information about the
process that restricted the step length

 It is attached to the step points: the pre
has the status of the previous step, the post
of the current step

 If the status of POST is “fGeometryBoundary”
the step ends on a volume boundary (does not
apply to word volume)

 To check if a step starts on a volume
boundary you can also use the step status of
the PRE-step point

Step concept and boundaries

Illustration of step starting and ending on
boundaries

Geant4 terminology: an
overview

Example of usage of the
hook user classes - 1

 G4UserRunAction
 Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

 Everything User want to know at this stage
 G4UserEventAction

 Has two methods (BeginOfEventAction() and
EndOfEventAction())

 One can apply an event selection, for
example

 Access the hit-collection and perform the
event analysis

Example of usage of the
hook user classes - 2

 G4UserStakingAction
 Classify priority of tracks

 G4UserTrackingAction
 Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

 For example used to decide if
trajectories should be stored

 G4UserSteppingAction
 Has a method which is invoked at the
end of a step

Part II: Retrieving
information from steps and
tracks

Example:
check if step is on boundaries

Example: step information
in SD

Something more about tracks

 After each step the track can change its
state

 The status can be (in red can only be
set by the User)

Particles in Geant4
 A particle in general has the following
three sets of properties:
 Position/geometrical info

 G4Track class (representing a particle to be tracked)
 Dynamic properties: momentum, energy,
spin,..

 G4DynamicParticle class
 Static properties: rest mass, charge, life
time

 G4ParticleDefinition class
 All the G4DynamicParticle objects of the
same kind of particle share the same
G4ParticleDefinition

Particles in Geant4

Examples: particle
information from step/track

Part III: Sensitive
Detectors

Sensitive Detector (SD)
 A logical volume becomes sensitive if it has
a pointer to a sensitive detector
(G4VSensitiveDetector)
 A sensitive detector can be instantiated
several times, where the instances are
assigned to different logical volumes

 Note that SD objects must have unique detector names
 A logical volume can only have one SD object attached (But

you can implement your detector to have many functionalities)
 Two possibilities to make use of the SD
functionality:
 Create your own sensitive detector (using
class inheritance)

 Highly customizable
 Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a
logical volume

 Create an instance of a sensitive detector
 Assign the pointer of your SD to the
logical volume of your detector geometry

 Must be done in ConstructSDandField() of
the user geometry class

create
instance

assign to
logical volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

boxLogical->SetSensitiveDetector(mySensitive);
(or)
SetSensitiveDetector("LVname",mySensitive); assign to

logical volume
(alternative)

Part IV: Native Geant4
scoring

Extract useful information
 Geant4 provides a number of primitive
scorers, each one accumulating one physics
quantity (e.g. total dose) for an event

 This is alternative to the customized
sensitive detectors (see later in this
lecture), which can be used with full
flexibility to gain complete control

 It is convenient to use primitive scorers
instead of user-defined sensitive
detectors when:
 you are not interested in recording each
individual step, but accumulating physical
quantities for an event or a run

 you have not too many scorers

G4MultiFunctionalDetector
 G4MultiFunctionalDetector is a concrete class
derived from G4VSensitiveDetector

 It should be assigned to a logical volume as a
kind of (ready-for-the-use) sensitive detector

 It takes an arbitrary number of
G4VPrimitiveSensitivity classes, to define the
scoring quantities that you need

 Each G4VPrimitiveSensitivity accumulates one
physics quantity for each physical volume

 E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveSensitivity provided by Geant4)
accumulates dose for each cell

 By using this approach, no need to implement
sensitive detector and hit classes!

G4VPrimitiveSensitivity
 Primitive scorers (classes derived from
G4VPrimitiveSensitivity) have to be
registered to the G4MultiFunctionalDetector
 ->RegisterPrimitive(), ->RemovePrimitive()

 They are designed to score one kind of
quantity (surface flux, total dose) and to
generate one hit collection per event
 automatically named as

 <MultiFunctionalDetectorName>/<PrimitiveScorerName>
 hit collections can be retrieved in the
EventAction or RunAction (as those generated
by sensitive detectors)

 do not share the same primitive score object
among multiple G4MultiFunctionalDetector
objects (results may mix up!)

MyDetectorConstruction::ConstructSDandField()

{

 G4MultiFunctionalDetector* myScorer = new

G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new

G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new

G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);

}

instantiate multi-
functional detector

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...

myCellScorer/TotalSurfFlux
myCellScorer/TotalDose

 Concrete Primitive Scorers ( Application Developers Guide
4.4.5)

 Track length
 G4PSTrackLength, G4PSPassageTrackLength

 Deposited energy
 G4PSEnergyDepsit, G4PSDoseDeposit

 Current/Flux
 G4PSFlatSurfaceCurrent,

G4PSSphereSurfaceCurrent,G4PSPassageCurrent, G4PSFlatSurfaceFlux,
G4PSCellFlux, G4PSPassageCellFlux

 Others
 G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers
that you may find useful

angle

V : Volume

L : Total step length in the cell

SurfaceCurrent :SurfaceCurrent :
Count number of Count number of
injecting particles injecting particles
at defined surface.at defined surface.

SurfaceFlux :SurfaceFlux :
Sum up Sum up
1/cos(angle) of 1/cos(angle) of
injecting injecting
particlesparticles
at defined at defined
surfacesurface

CellFlux :CellFlux :
Sum of L / V of Sum of L / V of
injecting injecting
particles particles
in the in the
geometrical cell.geometrical cell.

V : Volume

A closer look at some
scorers

 A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which kind of
tracks have to be scored (e.g. one wants to know
surface flux of protons only)

 G4SDChargeFilter (accepts only charged particles)
 G4SDNeutralFilter (accepts only neutral particles)
 G4SDKineticEnergyFilter (accepts tracks in a
defined range of kinetic energy)

 G4SDParticleFilter (accepts tracks of a given
particle type)

 G4VSDFilter (base class to create user-customized
filters)

G4VSDFilter

MyDetectorConstruction::ConstructSDandField()

{

G4VPrimitiveSensitivity* protonSurfFlux

= new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter to
the primitive scorer

register the scorer to the
multifunc detector (as

shown before)

For example ...

How to retrieve
information - part 1

 At the end of the day, one wants to
retrieve the information from the scorers
 True also for the customized hits
collection

 Each scorer creates a hit collection,
which is attached to the G4Event object
 Can be retrieved and read at the end of
the event, using an integer ID

 Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

 Operator += provided which automatically
sums up hits (no need to loop)

How to retrieve
information – part 2

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

 std::map<G4int,G4double*>::iterator itr;
 for (itr = evtMap->GetMap()->begin(); itr !=

evtMap->GetMap()->end(); itr++) {
 G4double flux = *(itr->second);
 G4int copyNb = *(itr->first);
}

Get ID for the
collection
(given the

name)
Get all HC
available in
this event

Get the HC with the
given ID (need a

cast)
Loop over the

individual entries
of the HC: the key
of the map is the
copyNb, the other

field is the real
content

Command-based scoring
Thanks to the newly developed parallel navigation, an

arbitrary scoring mesh geometry can be defined which
is independent to the volumes in the mass geometry.

Also, G4MultiFunctionalDetector and primitive scorer classes
now offer the built-in scoring of most-common quantities

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring  no C++ required, apart
from instantiating G4ScoringManager in main()

U
n

d
e
r

d
e
v
e
lo

p
m

e
n

t!

• Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>
 currently 5 filters are available

• Output
/score/draw <mesh_name>
<scorer_name>
/score/dump, /score/list

How to learn more about
built-in scoring

examples/extended/runAndEvent/RE02
(use of primitive scorers)

examples/extended/runAndEvent/RE03
(use of UI-based scoring)

Have a look at the dedicated
extended examples released with

Geant4:

Part V: Write
information on output
files

Introduction: data analysis
with Geant4

 For a long time, Geant4 did not attempt to
provide/support any data analysis tools
 The focus was given (and is given) to the
central mission as a Monte Carlo simulation
toolkit

 As a general rule, the user is expected to
provide her/his own code to output results to
an appropriate analysis format

 Basic classes for data analysis have recently
been implemented in Geant4 (g4analysis)
 Support for histograms and ntuples
 Output in ROOT, XML, HBOOK and CSV (ASCII)
 Appropriate only for easy/quick analysis: for
advanced tasks, the user must write his/her own
code and to use an external analysis tool

Introduction: how to write
simulation results

 Formatted (= human-readable) ASCII files
 Simplest possible approach is comma-separated
values (.csv) files

 The resulting files can be opened and analyzed
by tools such as: Gnuplot, Excel, OpenOffice,
Matlab, Origin, ROOT, PAW, …

 Binary files with complex analysis objects
(Ntuples)
 Allows to control what plot you want with
modular choice of conditions and variables

 Ex: energy of electrons knowing that (= cuts): (1)
position/location, (2) angular window, (3) primary/secondary …

 Tools: Root , PAW, AIDA-compliant (PI, JAS3
and OpenScientist)

Output stream (G4cout)

 G4cout is a iostream object defined by
Geant4.
 The usage of this objects is exactly the same
as the ordinary std::cout except that the
output streams will be handled by G4UImanager

 G4endl is the equivalent of std::endl to end a
line

 Output strings may be displayed on another
window or stored in a file

 One can also use the file streams
(std::ofstream) provided by the C++ libraries

Output on screen – an
example

 a

 G4cout << "Energy deposited--->" << " " << edep << " "
 << ”Charge--->" << " " << particleCharge << " "
 << ”Kinetic Energy --->" << " " << kineticEnergy << " "

 << G4endl;

Output on screen – an
example

G4analysis tools

Native Geant4 analysis
classes

 A basic analysis interface is available in
Geant4 for histograms (1D and 2D) and ntuples
 Make life easier because they are MT-compliant
(no need to worry about the interference of
threads)

 Unique interface to support different output
formats
 ROOT, AIDA XML, CSV and HBOOK
 Code is the same, just change one line to switch
from one to an other

 Everything done via the public analysis
interface G4AnalysisManager
 Singleton class: Instance()
 UI commands available for creating histograms at
run-time and setting their properties

g4analysis

 Selection of output format is hidden
in a user-defined .hh file

 All the rest of the code unchanged
 Unique interface

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4csv.hh" // can be used only with ntuples

#endif

Open file and book
histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->SetVerboseLevel(1);
 man->SetFirstHistoId(1);

 // Creating histograms
 man->CreateH1("h","Title", 100, 0., 800*MeV);
 man->CreateH1("hh","Title",100,0.,10*MeV);

 // Open an output file
 man->OpenFile("myoutput");
}

Open output file

ID=1

ID=2

Start numbering of
histograms from
ID=1

Fill histograms and close

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillH1(1, fEnergyAbs);
 man->FillH1(2, fEnergyGap);
}
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->Write();
 man->CloseFile();
}
MyRunAction::~MyRunAction()
{
 delete G4AnalysisManager::Instance();
}

ID=1

ID=2

Histograms - 1
 Support linear and log scales and un-
even bins

 CreateH2() for 2D histograms

 G4int CreateH1(const G4String& name, const G4String& title,
 G4int nbins, G4double xmin, G4double xmax,
 const G4String& unitName = "none",
 const G4String& fcnName = "none",
 const G4String& binSchemeName = "linear");

 G4int CreateH1(const G4String& name, const G4String& title,
 const std::vector<G4double>& edges,
 const G4String& unitName = "none",
 const G4String& fcnName = "none");

Histograms - 2
 Can change parameters of an existing
histogram

 Can fill with a weight
 Methods to scale, retrieve, get rms and mean

G4bool SetH1Title(G4int id, const G4String& title);
G4bool SetH1XAxisTitle(G4int id, const G4String& title);
G4bool SetH1YAxisTitle(G4int id, const G4String& title);

G4bool FillH1(G4int id, G4double value, G4double weight =
1.0);

G4bool ScaleH1(G4int id, G4double factor);

G4int GetH1Id(const G4String& name, G4bool warn = true) const;

Histograms - 3
 UI support available, to change
parameters (e.g. file name) at run-time

/analysis/setFileName name # Set name for the
histograms and ntuple file

/analysis/setHistoDirName name # Set name for the
histograms directory
/analysis/setNtupleDirName name # Set name for the
histograms directory
/analysis/setActivation true|false # Set activation option
/analysis/verbose level # Set verbose level

/analysis/h1/create
 name title [nbin min max] [unit] [fcn] [binScheme] #
Create 1D histogram

Ntuples
 g4tool supports ntuples

 Any number of ntuples, each with any
number of columns

 The content can be int/float/double
 For more complex tasks (e.g. full
functionality of ROOT TTrees) have to link
ROOT directly

 Similar strategy as for histograms. Access
happens through the common interface
G4AnalysisManager
 Saved on the same output file with
histograms

Book ntuples

#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man-> SetFirstNtupleId(1);

 // Creating ntuple
 man->CreateNtuple("name", "Title");
 man->CreateNtupleDColumn("Eabs");
 man->CreateNtupleDColumn("Egap");
 man->FinishNtuple();

 man->CreateNtuple("name2","title2");
 man->CreateNtupleIColumn("ID");
 man->FinishNtuple();
}

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples

 File handling and general clean-up
as shown for histograms

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillNtupleDColumn(1, 0, fEnergyAbs);
 man->FillNtupleDColumn(1, 1, fEnergyGap);
 man->AddNtupleRow(1);

 man->FillNtupleIColumn(2, 0, fID);
 man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

Part VI: User-defined
sensitive detectors: Hits
and Hits Collection

The ingredients of user SD
 A powerful and flexible way of extracting
information from the physics simulation is to
define your own SD

 Derive your own concrete classes from the base
classes and customize them according to your needs

Concrete class Base class

Sensitive
Detector

MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit
*>

Hit class - 1

 Hit is a user-defined class which derives from
the base class G4VHit. Two virtual methods
 Draw()
 Print()

 You can store various types of information by
implementing your own concrete Hit class

 Typically, one may want to record information
like
 Position, time and ∆E of a step
 Momentum, energy, position, volume, particle
type of a given track

 Etc.

Hit class - 2

A “Hit” is like a “container”, a empty box
which will store the information retrieved

step by stepThe Hit concrete class (derived by
G4VHit) must be written by the user:

the user must decide which variables
and/or information the hit should store

and when store them

X =

Y =

T =

∆E =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in

detectors defined as sensitive). Stored in the
“HitCollection”, attached to the G4Event: can be

retrieved at the EndOfEvent

Hit class - 3

Example

data member
(private)

public methods to
handle data

member

Geant4 Hits

Since in the simulation one may have different
sensitive detectors in the same setup (e.g. a

calorimeter and a Si detector), it is possible to
define many Hit classes (all derived by
G4VHit) storing different information

X =

Y =

T =

∆E =

Class Hit1 :
public G4VHit

Z =

Pos =

Dir =

Class Hit2 :
public G4VHit

Hits Collection - 1

At each step in a detector defined as sensitive, the
method ProcessHit() of the user

SensitiveDetector class is inkoved: it must create,
fill and store the Hit objects

X = 1

Y = 2

T =3

∆E =
1

Step 1

X = 2

Y = 0

T
=3.1

∆E =
2Step 2

X = 3

Y = 2

T =4

∆E =
3
Step 3

X = 3

Y = 2

T =6

∆E =
1
Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2

 Once created in the sensitive detectors,
objects of the concrete hit class must be
stored in a dedicated collection
 Template class G4THitsCollection<MyHit>,
which is actually an array of MyHit*

 The hits collections can be accesses in
different phases of tracking
 At the end of each event, through the
G4Event (a-posteriori event analysis)

 During event processing, through the
Sensitive Detector Manager G4SDManager
(event filtering)

The HCofThisEvent
Remember that you may have many kinds of

Hits (and Hits Collections)

X = 1

Y = 2

T =3

∆E =
1

X = 2

Y = 0

T
=3.1

∆E =
2

X = 3

Y = 2

T =4

∆E =
3

X = 3

Y = 2

T =6

∆E =
1

.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0
)

.....

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0
)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1
)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an
event

 A G4Event object has a G4HCofThisEvent
object at the end of the event
processing (if it was successful)
 The pointer to the G4HCofThisEvent
object can be retrieved using the
G4Event::GetHCofThisEvent() method

 The G4HCofThisEvent stores all hits
collections creted within the event
 Hits collections are accessible and
can be processes e.g. in the
EndOfEventAction() method of the User
Event Action class

SD and Hits

 Using information from particle steps, a
sensitive detector either
 constructs, fills and stores one (or more)
hit object

 accumulates values to existing hits
 Hits objects can be filled with
information in the ProcessHits() method
of the SD concrete user class  next
slides
 This method has pointers to the current
G4Step and to the G4TouchableHistory of
the ReadOut geometry (if defined)

Sensitive Detector (SD)

 A specific feature to Geant4 is that a user
can provide his/her own implementation of
the detector and its response  customized

 To create a sensitive detector, derive your
own concrete class from the
G4VSensitiveDetector abstract base class
 The principal purpose of the sensitive
detector is to create hit objects

 Overload the following methods (see also next
slide):

 Initialize()
 ProcessHits() (Invoked for each step if step starts in logical

volume having the SD attached)
 EndOfEvent()

Sensitive Detector

User
concret

e SD
class

SD implementation:
constructor

 Specify a hits collection (by its unique
name) for each type of hits considered in the
sensitive detector:
 Insert the name(s) in the collectionName vector

Base
class

SD implementation:
Initialize()

 The Initialize() method is invoked at the beginning of each event
 Construct all hits collections and insert them in the

G4HCofThisEvent object, which is passed as argument to
Initialize()

 The AddHitsCollection() method of G4HCofThisEvent requires the
collection ID

 The unique collection ID can be obtained with GetCollectionID():
 GetCollectionID() cannot be invoked in the constructor of this SD

class (It is required that the SD is instantiated and registered
to the SD manager first).

 Hence, we defined a private data member (collectionID), which is
set at the first call of the Initialize() function

SD implementation:
ProcessHits()

 This ProcessHits() method is invoked for every
step in the volume(s) which hold a pointer to
this SD (= each volume defined as “sensitive”)

 The main mandate of this method is to generate
hit(s) or to accumulate data to existing hit
objects, by using information from the current
step

 Note: Geometry information must be derived from
the “PreStepPoint”

// 1) create hit

// 2) fill hit

// 3) insert in the
collection

G4bool

SD implementation:
EndOfEvent()

 This EndOfEvent() method is invoked at
the end of each event.
 Note is invoked before the EndOfEvent
function of the G4UserEventAction class

Processing hit information
- 1

 Retrieve the pointer of a hits collection with
the GetHC()method of G4HCofThisEvent
collection using the collection index (a G4int
number)

 Index numbers of a hit collection are unique
and don’t change for a run. The number can be
obtained by
G4SDManager::GetCollectionID(“name”);

 Notes:
 if the collection(s) are not created, the
pointers of the collection(s) are NULL: check
before trying to access it

 Need an explicit cast from G4VHitsCollection
(see code)

Processing hit information
- 2

 Loop through the entries of a hits
collection to access individual hits
 Since the HitsCollection is a vector,
you can use the [] operator to get the
hit object corresponding to a given
index

 Retrieve the information contained in
this hit (e.g. using the Get/Set methods
of the concrete user Hit class) and
process it

 Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits
collection by index

loop over
individual hits,

retrieve the data

The HCofThisEvent
Remember that you may have many kinds of

Hits (and Hits Collections)

X = 1

Y = 2

T =3

∆E =
1

X = 2

Y = 0

T
=3.1

∆E =
2

X = 3

Y = 2

T =4

∆E =
3

X = 3

Y = 2

T =6

∆E =
1

.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0
)

.....

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0
)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1
)

HCofThisEvent

Attached to
G4Event*

Recipe and strategy - 1

 Create your detector geometry
 Solids, logical volumes, physical volumes

 Implement a sensitive detector and
assign an instance of it to the logical
volume of your geometry set-up
 Then this volume becomes “sensitive”
 Sensitive detectors are active for each
particle steps, if the step starts in
this volume

Recipe and strategy - 2

 Create hits objects in your sensitive
detector using information from the
particle step
 You need to create the hit class(es) according
to your requirements

 Store hits in hits collections
(automatically associated to the G4Event
object)

 Finally, process the information contained
in the hit in user action classes (e.g.
G4UserEventAction) to obtain results to be
stored in the analysis object

Backup

To write a new ASCII file: a
recipe - 1

 Add to the include list of your class the
<fstream> header file
 This will allow to use the C++ libraries for
stream on file

 Put into the class declaration (file .hh) an
ofstream (=output file stream) object (or
pointer):
std::ofstream myFile;
 In this way, the file object will be visible in
all methods of the class

 Open the file, in the class constructor, or
into a specific method:
 myFile.open(“filename.out”, std::ios::trunc);
 To append data to an existing file, you must
specify std::ios::app

To write a new ASCII file: a
recipe - 2

 Inside a regularly called method (e.g. inside a
virtual method of an User Class), where
appropriate, write your data (i.e. G4double,
G4int, G4String,…) to the file, in the same
fashion of G4cout:

 This could be for instance the EndOfEventAction()
of the G4UserEventAction user class

 Finally close the file, in the class
destructor, or into a specific method:
myFile.close();

if (myFile.is_open()) // Check that file is opened
{
 myFile << kineticEnergy/MeV << " " << dose << G4endl;
 …
}

Plotting with tools
EXCEL

GNUPLOT

OPENOFFICE

MATLAB

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88

