
Geant4: how to retrieve
information

Luciano Pandola
INFN

Part I: The main ingredients

Optional user classes - 1
 Five concrete base classes whose virtual member

functions the user may override to gain control of the
simulation at various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a
dummy implementation (not purely virtual)
 Empty implementation: does nothing

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

 The user may implement the member
functions he desires in his/her derived classes
 E.g. one may want to perform some action at each

tracking step

 Objects of user action classes must be
registered to the G4(MT)RunManager via
the ActionInitialization
runManager->SetUserAction(new
MyActionInitialization);

MyActionInitialization (MT
mode)

void MyActionInitialization::Build() const
{
 //Set mandatory classes
 SetUserAction(new MyPrimaryGeneratorAction());
 // Set optional user action classes
 SetUserAction(new MyEventAction());
 SetUserAction(newMyRunAction());
}

void MyActionInitialization::BuildForMaster() const
{
 // Set optional user action classes
 SetUserAction(newMyMasterRunAction());
}

 Register thread-local user actions

 Register RunAction for the master

The Run (G4Run)
 As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
 Within a run, the User cannot change

 The detector setup
 The physics setting (processes, models)

 A Run is a collection of events with the same detector and
physics conditions

 At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

 The G4RunManager class manages the processing of each
Run, represented by:
 G4Run class
 G4UserRunAction for an optional User hook

The Event (G4Event)
 An Event is the basic unit of simulation in Geant4
 At the beginning of processing, primary tracks are generated

and they are pushed into a stack
 A track is popped up from the stack one-by-one and ‘tracked’

 Secondary tracks are also pushed into the stack
 When the stack gets empty, the processing of the event is

completed
 G4Event class represents an event. At the end of a successful

event it has:
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as outputs)

 G4EventManager class manages the event.
 G4UserEventAction is the optional User hook

The Step (G4Step)
 G4Step represents a step in the particle propagation
 A G4Step object stores transient information of the

step
 In the tracking algorithm, G4Step is updated each

time a process is invoked
 You can extract information from a step after the

step is completed
 Both, the ProcessHits() method of your sensitive

detector and UserSteppingAction() of your
step action class file get the pointer of G4Step

 Typically , you may retrieve information in these
functions (for example fill histograms in Stepping
action)

The Track (G4Track)

 The Track is a snapshot of a particle and it is represented
by the G4Track class
 It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
 It is updated after every step

 The track object is deleted when
 It goes outside the world volume
 It disappears in an interaction (decay, inelastic scattering)
 It is slowed down to zero kinetic energy and there are no

'AtRest' processes
 It is manually killed by the user

 No track object persists at the end of the event
 G4TrackingManager class manages the tracking
 G4UserTrackingAction is the optional hook for tracking

Example of usage of the hook
user classes - 1

 G4UserRunAction
 Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

 Everything User want to know at this stage
 G4UserEventAction

 Has two methods (BeginOfEventAction() and
EndOfEventAction())

 One can apply an event selection, for example
 Access the hit-collection and perform the event

analysis

Example of usage of the hook
user classes - 2

 G4UserStakingAction
 Classify priority of tracks

 G4UserTrackingAction
 Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

 For example used to decide if trajectories should
be stored

 G4UserSteppingAction
 Has a method which is invoked at the end of a

step

Part II: Sensitive Detectors

Sensitive Detector (SD)
 A logical volume becomes sensitive if it has a pointer

to a sensitive detector (G4VSensitiveDetector)
 A sensitive detector can be instantiated several times,

where the instances are assigned to different logical
volumes
 Note that SD objects must have unique detector names
 A logical volume can only have one SD object attached (But you

can implement your detector to have many functionalities)
 Two possibilities to make use of the SD functionality:

 Create your own sensitive detector (using class
inheritance see next slides)
 Highly customizable

 Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a logical
volume

 Create an instance of a sensitive detector
 Assign the pointer of your SD to the logical volume of

your detector geometry
 Must be done in ConstructSDandField() of the

user geometry class

create
instance

assign to
logical volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

boxLogical->SetSensitiveDetector(mySensitive);
(or)
SetSensitiveDetector("LVname",mySensitive); assign to

logical volume
(alternative)

Part III: Native Geant4
scoring

Extract useful information
 Geant4 provides a number of primitive scorers,

each one accumulating one physics quantity (e.g.
total dose) for an event

 This is alterative to the customized sensitive
detectors (see later in this lecture), which can be
used with full flexibility to gain complete control

 It is convenient to use primitive scorers instead of
user-defined sensitive detectors when:
 you are not interested in recording each individual

step, but accumulating physical quantities for an
event or a run

 you have not too many scorers

G4MultiFunctionalDetector
 G4MultiFunctionalDetector is a concrete class

derived from G4VSensitiveDetector
 It should be assigned to a logical volume as a kind of

(ready-for-the-use) sensitive detector
 It takes an arbitrary number of
G4VPrimitiveSensitivity classes, to define the
scoring quantities that you need
 Each G4VPrimitiveSensitivity accumulates one physics

quantity for each physical volume
 E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveSensitivity provided by Geant4)
accumulates dose for each cell

 By using this approach, no need to implement sensitive
detector and hit classes!

G4VPrimitiveSensitivity
 Primitive scorers (classes derived from
G4VPrimitiveSensitivity) have to be registered to
the G4MultiFunctionalDetector
 ->RegisterPrimitive(), ->RemovePrimitive()

 They are designed to score one kind of quantity
(surface flux, total dose) and to generate one hit
collection per event
 automatically named as

 <MultiFunctionalDetectorName>/<PrimitiveScorerName>
 hit collections can be retrieved in the EventAction or

RunAction (as those generated by sensitive detectors)
 do not share the same primitive score object among

multiple G4MultiFunctionalDetector objects (results may
mix up!)

MyDetectorConstruction::ConstructSDandField()

{

 G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);

}

instantiate multi-
functional detector

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...

myCellScorer/TotalSurfFlux
myCellScorer/TotalDose

 Concrete Primitive Scorers (Application Developers Guide 4.4.5)
 Track length

 G4PSTrackLength, G4PSPassageTrackLength
 Deposited energy

 G4PSEnergyDepsit, G4PSDoseDeposit
 Current/Flux

 G4PSFlatSurfaceCurrent,
G4PSSphereSurfaceCurrent,G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

 Others
 G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers that
you may find useful

angle

V : Volume

L : Total step length in the cell

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up
1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical
cell.

V : Volume

A closer look at some scorers

 A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which kind of
tracks have to be scored (e.g. one wants to know surface flux
of protons only)
 G4SDChargeFilter (accepts only charged particles)
 G4SDNeutralFilter (accepts only neutral particles)
 G4SDKineticEnergyFilter (accepts tracks in a defined

range of kinetic energy)
 G4SDParticleFilter (accepts tracks of a given particle type)
 G4VSDFilter (base class to create user-customized filters)

G4VSDFilter

How to retrieve information -
part 1

 At the end of the day, one wants to retrieve the
information from the scorers
 True also for the customized hits collection

 Each scorer creates a hit collection, which is
attached to the G4Event object
 Can be retrieved and read at the end of the event,

using an integer ID
 Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

 Operator += provided which automatically sums up
hits (no need to loop)

How to retrieve information –
part 2

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

 std::map<G4int,G4double*>::iterator itr;
 for (itr = evtMap->GetMap()->begin(); itr !=
 evtMap->GetMap()->end(); itr++) {
 G4double flux = *(itr->second);
 G4int copyNb = *(itr->first);
}

Get ID for the
collection (given

the name)

Get all HC
available in this

event

Get the HC with the
given ID (need a cast)

Loop over the
individual entries of
the HC: the key of the

map is the copyNb,
the other field is the

real content

Part IV: Write information
on output files

Introduction: data analysis
with Geant4

 For a long time, Geant4 did not attempt to
provide/support any data analysis tools
 The focus was given (and is given) to the central mission

as a Monte Carlo simulation toolkit
 As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis
format

 Basic classes for data analysis have recently been
implemented in Geant4 (g4analysis)
 Support for histograms and ntuples
 Output in ROOT, XML, HBOOK and CSV (ASCII)
 Appropriate only for easy/quick analysis: for advanced

tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
simulation results

 Formatted (= human-readable) ASCII files
 Simplest possible approach is comma-separated values

(.csv) files
 The resulting files can be opened and analyzed by tools

such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, …

 Binary files with complex analysis objects (Ntuples)
 Allows to control what plot you want with modular choice

of conditions and variables
 Ex: energy of electrons knowing that (= cuts): (1)

position/location, (2) angular window, (3) primary/secondary …
 Tools: Root , PAW, AIDA-compliant (PI, JAS3 and

OpenScientist)

G4analysis tools

Native Geant4 analysis classes
 A basic analysis interface is available in Geant4 for

histograms (1D and 2D) and ntuples
 Make life easier because they are MT-compliant (no need

to worry about the interference of threads)
 Unique interface to support different output formats

 ROOT, AIDA XML, CSV and HBOOK
 Code is the same, just change one line to switch from

one to an other
 Everything done via the public analysis interface
G4AnalysisManager
 Singleton class: Instance()
 UI commands available for creating histograms at run-

time and setting their properties

g4analysis

 Selection of output format is hidden in a
user-defined .hh file

 All the rest of the code unchanged
 Unique interface

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4csv.hh" // can be used only with ntuples

#endif

Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->SetVerboseLevel(1);
 man->SetFirstHistoId(1);

 // Creating histograms
 man->CreateH1("h","Title", 100, 0., 800*MeV);
 man->CreateH1("hh","Title",100,0.,10*MeV);

 // Open an output file
 man->OpenFile("myoutput");
}

Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

Fill histograms and close
#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillH1(1, fEnergyAbs);
 man->FillH1(2, fEnergyGap);
}
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->Write();
 man->CloseFile();
}
MyRunAction::~MyRunAction()
{
 delete G4AnalysisManager::Instance();
}

ID=1

ID=2

Histograms
 Support linear and log scales and un-even

bins
 CreateH2() for 2D histograms

 G4int CreateH1(const G4String& name, const G4String& title,
 G4int nbins, G4double xmin, G4double xmax,
 const G4String& unitName = "none",
 const G4String& fcnName = "none",
 const G4String& binSchemeName = "linear");

 G4int CreateH1(const G4String& name, const G4String& title,
 const std::vector<G4double>& edges,
 const G4String& unitName = "none",
 const G4String& fcnName = "none");

Ntuples

 g4tool supports ntuples
 Any number of ntuples, each with any number

of columns
 The content can be int/float/double

 For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

 Similar strategy as for histograms. Access
happens through the common interface
G4AnalysisManager
 Saved on the same output file with histograms

Book ntuples
#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man-> SetFirstNtupleId(1);

 // Creating ntuple
 man->CreateNtuple("name", "Title");
 man->CreateNtupleDColumn("Eabs");
 man->CreateNtupleDColumn("Egap");
 man->FinishNtuple();

 man->CreateNtuple("name2","title2");
 man->CreateNtupleIColumn("ID");
 man->FinishNtuple();
}

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples

 File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillNtupleDColumn(1, 0, fEnergyAbs);
 man->FillNtupleDColumn(1, 1, fEnergyGap);
 man->AddNtupleRow(1);

 man->FillNtupleIColumn(2, 0, fID);
 man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

Part V: User-defined sensitive
detectors: Hits and Hits
Collection

The ingredients of user SD
 A powerful and flexible way of extracting information

from the physics simulation is to define your own SD
 Derive your own concrete classes from the base

classes and customize them according to your needs

Concrete class Base class

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit*>

Hit class - 1

 Hit is a user-defined class which derives from the
base class G4VHit. Two virtual methods
 Draw()
 Print()

 You can store various types of information by
implementing your own concrete Hit class

 Typically, one may want to record information like
 Position, time and ∆E of a step
 Momentum, energy, position, volume, particle type of

a given track
 Etc.

Hit class - 2

A “Hit” is like a “container”, an empty box which
contains the information retrieved step by step

The Hit concrete class (derived by
G4VHit) must be written by the user: the
user must decide which variables and/or
information the hit should store and when

store them

X =

Y =

T =

∆E =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors
defined as sensitive). Stored in the “HitCollection”, attached

to the G4Event: can be retrieved at the EndOfEvent

Hit class - 3

Example

data member (private)

public methods to
handle data member

Geant4 Hits

Since in the simulation one may have different
sensitive detectors in the same setup (e.g. a

calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHit) storing

different information

X =

Y =

T =

∆E =

Class Hit1 :
public G4VHit

Z =

Pos =

Dir =

Class Hit2 :
public G4VHit

Hits Collection - 1
At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is
inkoved: it must create, fill and store the Hit objects

X = 1

Y = 2

T =3

∆E = 1

Step 1

X = 2

Y = 0

T =3.1

∆E = 2

Step 2

X = 3

Y = 2

T =4

∆E = 3

Step 3

X = 3

Y = 2

T =6

∆E = 1

Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2

 Once created in the sensitive detectors, objects of
the concrete hit class must be stored in a
dedicated collection
 Template class G4THitsCollection<MyHit>,

which is actually an array of MyHit*

 The hits collections can be accesses in different
phases of tracking
 At the end of each event, through the G4Event (a-

posteriori event analysis)
 During event processing, through the Sensitive

Detector Manager G4SDManager (event filtering)

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

∆E = 1

X = 2

Y = 0

T =3.1

∆E = 2

X = 3

Y = 2

T =4

∆E = 3

X = 3

Y = 2

T =6

∆E = 1

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an event

 A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)
 The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event::GetHCofThisEvent() method

 The G4HCofThisEvent stores all hits
collections creted within the event
 Hits collections are accessible and can be processes

e.g. in the EndOfEventAction() method of the
User Event Action class

SD and Hits

 Using information from particle steps, a
sensitive detector either
 constructs, fills and stores one (or more) hit object
 accumulates values to existing hits

 Hits objects can be filled with information in
the ProcessHits() method of the SD
concrete user class next slides
 This method has pointers to the current G4Step

Sensitive Detector (SD)

 A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response customized

 To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class
 The principal purpose of the sensitive detector is to

create hit objects
 Overload the following methods (see also next slide):

 Initialize()
 ProcessHits() (Invoked for each step if step starts in

logical volume having the SD attached)
 EndOfEvent()

Sensitive Detector

User
concrete
SD class

Processing hit information - 1

 Retrieve the pointer of a hits collection with the
GetHC()method of G4HCofThisEvent collection
using the collection index (a G4int number)

 Index numbers of a hit collection are unique and
don’t change for a run. The number can be obtained
by G4SDManager::GetCollectionID(“name”);

 Notes:
 if the collection(s) are not created, the pointers of the

collection(s) are NULL: check before trying to access
it

 Need an explicit cast from G4VHitsCollection (see
code)

Processing hit information - 2

 Loop through the entries of a hits collection to
access individual hits
 Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

 Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

 Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits
collection by index

loop over
individual hits,

retrieve the data

	Geant4: how to retrieve information
	Part I: The main ingredients
	Optional user classes - 1
	Optional user classes - 2
	MyActionInitialization (MT mode)
	The Run (G4Run)
	The Event (G4Event)
	The Step (G4Step)
	The Track (G4Track)
	Example of usage of the hook user classes - 1
	Example of usage of the hook user classes - 2
	Part II: Sensitive Detectors
	Sensitive Detector (SD)
	Adding sensitivity to a logical volume
	Part III: Native Geant4 scoring
	Extract useful information
	G4MultiFunctionalDetector
	G4VPrimitiveSensitivity
	For example ...
	Some primitive scorers that you may find useful
	A closer look at some scorers
	G4VSDFilter
	How to retrieve information - part 1
	How to retrieve information – part 2
	Part IV: Write information on output files
	Introduction: data analysis with Geant4
	Introduction: how to write simulation results
	G4analysis tools
	Native Geant4 analysis classes
	g4analysis
	Open file and book histograms
	Fill histograms and close
	Histograms
	Ntuples
	Book ntuples
	Fill ntuples
	Part V: User-defined sensitive detectors: Hits and Hits Collection
	The ingredients of user SD
	Hit class - 1
	Hit class - 2
	Hit class - 3
	Geant4 Hits
	Hits Collection - 1
	Hits Collection - 2
	The HCofThisEvent
	Hits Collections of an event
	SD and Hits
	Sensitive Detector (SD)
	Sensitive Detector
	Processing hit information - 1
	Processing hit information - 2
	Process hit: example

