

MiniAMchip05 & MiniLAMBslp

Pierluigi Luciano
PHD student at University of Cassino
Fellow at Department of Physics

Summary

1 – Presentation of MiniAMchip05 and MiniLAMBslp board.

2 – Idea to test and to validate the LAMB board in stand-alone mode.

Little Story

AMChip04:

- Package: PQ208
- Parallel I/O interface

We need to increase the number of pads for future versions:

- To use a BGA package.
- Simplify the routing of board.

Idea: serial link to transmit the data

Family 05

• We have bought a *IP-CORE* to provide the *chip* with serialisers and deserialisers.

MiniAMChip05

Package: QFN 64

Die: 3.7 mm²

Board: MiniLAMB-SLP

Status: under test

Package: BGA 23 x 23 mm

Die: 12 mm^2

Board: LAMB-SLP

Status: submit

AMB-SLP

The MiniLAMB-SLP board is mounted on the AMB-SLP board.

AMB-SLP Board

- •The *FPGA* receives the cluster's list from the P3 connector and distributes to 4 MiniLAMB-SLP boards.
- The FPGA receives the roads from MiniLAMB-SLP board and sends them to the rest of the system through the P3 connector.

Block Diagram

What can we do?

- Test the chips.
- Test the serials link.
- Simulate the Pattern Matching's algorithm.

MiniLAMB Board

This is the MiniLAMB prototype.

140 mm x 140 mm, 10 layers, two different supply voltages and many serial links.

Test Stand: Online

Complete Test with:

- AMB-SLP Board.
- MiniLAMB-SLP Board.
- Crate VME.
- CPU TDAQ4.

Strategy: Offline

- Stand-alone test of each MiniLAMB board.
- Perform Pattern Matching's algorithm without VME.
- Useful for production @ To validate a single MiniLAMB board.

What we need

The Evaltuation Board and the MiniLAMB are not compatible (mechanical and electrical problem).

We have designed a board to be able to connect the Evaluation Board to the MiniLAMB board.

- 6 layers.
- 12V, 48V Input Voltage
- DC-DC generate
 2.5V, 1.2V, 1V.
- Serial links between FPGA and LAMB board.

Mezzanine Board

Fanout Repeater

FMC-HPC Connectors

Power Supply

DC-DC@48 V - 2.5 V

DC-DC@48 V - 1.2 V

DC-DC@12 V - 1 V

Test Stand: Offline

Mezzanine

MiniLAMB Board

Evaluation Board

First Test

First Result

Our Goal

In the future (production phase) we would like to press a button.

And we hope that the result is:

- Ok, this LAMB board works
- ·("Validate Status").

Thanks!!!!