Cross section measurements of heavy flavour quarks production in association with a vector boson at hadron colliders

M. Vanadia

Sapienza Università di Roma & INFN

24 Marzo 2014

Outline

- W+ jets and Z+ jets at hadron colliders: theory vs experiments
- W/Z+ heavy flavour jets: motivation
- Identification of W/Z+heavy flavour jets final states: heavy flavour tagging
- Measurements:
 - W + c
 - W + b
 - *Z* + *b*
- Outlook and conclusion

W/Z + jets production at hadron colliders

- $p\overline{p}$ collisions @ 1.96 TeV (Run II)
- $\bullet~{\sf Run}~{\sf II}{:}~10~{\rm fb}^{-1}$

- pp collisions
- \bullet 2010: 40 $\rm pb^{-1}$ @ 7 $\rm TeV$
- 2011: 5 $\rm fb^{-1}$ @ 7 $\rm TeV$
- 2012: 25 fb⁻¹ @ 8 TeV

Structure of the proton and hadron collisions

Structure of the proton

- Valence: uud, Sea: $q\overline{q}$ pairs +g
- Quark densities described by parton density functions (PDF)
 - fundamental input for calculations
 - PDF uncertainty reduction crucial for measurements and searches
- LHC and Tevatron look at different phase space
 - pp more sensitive to sea
 - 7 TeV wider x sensitivity wrt 1.96

Collision modelling

- Pile-up
 - e.g. LHC 2011 dataset \rightarrow average 9 collisions/ bunch crossing
 - challenge for detectors
- Multiple Parton Interactions
 - significant uncertainty in the predictions
 - published determination in data with W + 2 jets @ LHC
 - significant impact to W/Z+hf

Vector boson production at hadron colliders

- High statistics @ Tevatron and LHC
- Clear signature leptonic decays
 - \rightarrow high background rejection
- Huge cross section wrt many processes
 - top physics, Higgs Boson, SUSY/BSM ...

W+ jets and Z+ jets

W+ jets and Z+ jets are an ideal laboratory for pQCD physics

- W/Z + N jets proportional to α_s^N at lowest order
- EW + QCD mixture: relatively low number of diagrams, pQCD calculation possible for high N^{jets}
- Experimentally clear signature and high rate

W/Z + heavy flavour jets: motivation

• Fundamental input for comprehension of QCD in hadron collision

- perturbative calculation and non-perturbative evolution
- treatment of heavy flavour quarks in the initial state
- Probe the strange and heavy flavour content of the proton \rightarrow PDFs
- Significant background for top, Higgs, SUSY

need reliable description \rightarrow MC tuning

W/Z+hf: background for new physics

Many SUSY and new physics searches are in final states with W/Z+hf

Figure 11: E_T^{miss} distribution for the event class with 2 jets, 2 *b*-jets and E_T^{miss} (v2j2b). The dashed vertical line and the arrow indicate the region of interest which has the smallest p-value (0.097) for this event class.

ATLAS-CONF-2014-006, A general search for new phenomena with the ATLAS

M. Vanadia Cross sect

 $\tilde{\chi}_1^{\pm}$ W

W/Z + jets: ME and PS

• Matrix Elements: hard Q^2 , Parton Shower: soft Q^2 \rightarrow arbitrary distinction

• ME-PS matching needed to avoid double-counting: CKKW, MLM, ...

 \rightarrow significant differences between matching schemes (e.g. for Z+ jets), measurements used for tuning

• Ad-hoc procedures applied to avoid double counting for heavy-flavours

e.g. $W + b\overline{b}$ (ME) vs W+0 jet $+ b\overline{b}$ (PS) ME \rightarrow wide angle, PS \rightarrow small angle

- PS vs ME has significant impact on $b\overline{b}\;\Delta R$ and $\mathrm{p_{T}}$ spectra
- Difficult interfacing theory with exp.: *b-jet* can be associated to more than 1 quark, description of hadronization...

W+ jets and Z+ jets cross section measurements @ LHC

- W+ jets and Z+ jets measured with high precision
- Reached high jets multiplicities

Scaling of $(n_{jets} + 1)/n_{jets}$ in Z+jets events ATLAS measurement with 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV; arXiv:1304.7098v1;

Challenge for predictions and measurements: test of "extreme" kinematics regions, i.e. regions with large higher order corrections

For scaling patterns see arXiv:1208.3676 [hep-ph]

Blackhat predictions Phys. Rev. D 82 (2010) 074002 and Phys. Rev. D 85 (2012) 031501

Cross section measurements of heavy flavour quarks production in association

W/Z + heavy flavour jets: calculation scheme

- W+ b-jets different contributions at NLO
 - $\ \, \mathbf{q} \, \overline{\mathbf{q}} \rightarrow Wbb$
 - $\ \, @ \ \, q\overline{q} \rightarrow Wbbg$
 - 𝔅 gq → Wbbq
 - \bigcirc bq \rightarrow Wbq
 - 𝔅 bq →Wbqg
 - **(b)** $bg \rightarrow Wbqq$
 - Contributions 1-3 must be calculated with $m_b \neq 0$ to avoid divergencies in $g \rightarrow b\overline{b}$ splitting
 - Contributions 4-6 exist in the 5-flavour-number scheme (5FNS), where *b* are present in the initial state with their own PDF

on the other side, in the 4-flavour-number scheme (4FNS) only *udscg* have their PDF, b quarks are produced only by gluon splitting

- Calculations performed with different assumptions on the calculation scheme have significant differences (e.g. see later Z+ b-jets)
- Double parton interactions also give significant contribution

Measuring W/Z + (heavy flavour) jets

Signal and background processes

Single-top: difficult to estimate in data $\overline{q'}$ qWW \overline{b} W^+ Diboson: hard to estimate in data

QCD multi-jet: high rejection, but huge cross section. Must be estimated in data

W/Z + jets reconstruction

 \sqrt{s} not fixed, transverse quantities must be used:

- Transverse energy E_T
- Transverse momentum p_T
- Transverse missing energy $E_T^{\text{miss}} \rightarrow \text{neutrinos}$

Angular variables defined:

- ϕ around the beams
- heta in the beams plane $o \eta$

- W/Z leptonic decays selected, leptons $p_{\rm T} > 20-30~{\rm GeV}$
- Jets reconstructed with clustering algorithm from deposition in calorimeters (anti- k_T @LHC)
- For *b*-jet identification critical vertex reconstruction

Jets are tagged with:

- SV tagger / impact parameter tagger
- Multivariate tagger
- Neural network combination of simple taggers

Challenge

- c-hadrons have smaller masses (${\approx}2~{\rm GeV}$) but only slightly lower decay length (c\tau ${\approx}0.1\text{-}0.3$ mm)
- ullet \to b-jet vs c-jet discrimination is the challenge for taggers

Jets originated from *b*-hadrons can be selected (TAGGED) using:

- long lifetime (cτ ≈0.5 mm) → displaced secondary vertex (SV), impact paramter of tracks in jet
- high mass (>5 GeV) \rightarrow invariant mass of tracks associated to SV
- kinematics
- number of tracks in the jet
- cascade vertices
- ۰...

- Taggers define discriminating variables
- Working point selected optimising analysis. In measurements presented in this talk:
 - $\epsilon_b \approx$ 50% (depends on jet p_T)
 - c-jet rejection factor ≈ 10
 - $\bullet~$ light-jet rejection factor > 100

- Taggers @ LHC calibrated in different kinematics regions, taking into account correlations on uncertainties
- Efficiency measured in data
 - multi-jet sample, using orthogonal tagger
 - soft-muon tagged jet sample
 - tt sample
- Mistag rate for light-jets measured in data in negative-tagged event or using low-mass SV
- Challenging mistag rate of c-jets \rightarrow it can be measured in W + c events

Selection of a W + c sample

Two main *c* identification techniques:

- c-jet tagged using semimuonic decays of charmed mesons (low BR, clear signature)
 - \rightarrow soft muon inside jet
- reconstruction of D/D^* meson in detector tracker
 - $D^+ \to K^- \pi^+ \pi^-$ (9%) • $D^{*+} \to D^0 \pi^+$ (68%) with $D^0 \to K^- \pi^+$, $D^0 \to K^- \pi^+ \pi^0$ or $D^0 \to K^- \pi^+ \pi^- \pi^+$

- Charge of W from selected e/μ
- Charge of c from reconstructed D meson or from soft muon charge

Selected events classified in Same Sign (SS) and Opposite Sign (OS):

•
$$N^{OS} = N^{signal} + N^{bkg}_{OS}$$

• $N^{SS} = N^{bkg}_{SS}$
• Since $N^{bkg}_{OS} \approx N^{bkg}_{SS} \rightarrow N^{OS} - N^{SS} \approx N^{signal}$
 $N^{OS} - N^{SS}$ yield dominated by $W + c$ signal (70-80% contribution)

W + c sample

Background contribution \approx symmetric in OS/SS, signal totally asymmetric.

After OS-SS subtraction, sample dominated by signal. Residual contribution estimated in data (QCD, $t\bar{t}$, Z+ jets) or simulated.

19/37

- c-jet selected requiring muon with $p_{\rm T} > 4 {\rm GeV}$ with $\Delta R < 0.5$ from jets
- cut on muon track quality (χ^2_{match} between ID and MS) to enhance light-jets rejection
- calibration of muon selection efficiency in $Z \rightarrow \mu\mu$ data sample
- mistag rate calibrated in multijet sample

Efficiency of soft muon selection in data and $\ensuremath{\mathsf{MC}}$

- c-jet selected requiring muon with $p_{\rm T} > 4 {\rm GeV}$ with $\Delta R < 0.5$ from jets
- cut on muon track quality (χ^2_{match} between ID and MS) to enhance light-jets rejection
- calibration of muon selection efficiency in $Z \rightarrow \mu\mu$ data sample
- mistag rate calibrated in multijet sample

Efficiency of soft muon selection in data and MC

considering a realistic alignment in MC significantly improves data/MC agreement

b-jet mistag rate due to *c*-jets can be measured in clean sample of *c*-jets using W + c-jet events

W + c cross section measurements

- CMS JHEP02 (2014) 013: 2011 data, 5 ${\rm fb}^{-1}$ @ 7 ${\rm TeV}$
- ATLAS arXiv:1402.6263: 2011 data, 4.6 ${\rm fb}^{-1}$ @ 7 ${\rm TeV}$
- CDF Phys.Rev.Lett. 110 (2013) 7, 071801: Run II data, 4.3 ${\rm fb}^{-1}$ @ 1.96 ${\rm TeV}$

W + 1 c production

- totally dominated by production diagrams with s in the initial state \rightarrow sensitive to s PDF
- $W^+\overline{c}/W^-c$ constrains s/\overline{s} asymmetry

W + c results: cross section

- ATLAS results favour PDF fits with higher s quark content
- CMS more consistent with PDF fit lower s quark content
- Cannot do a direct comparison of results
 - different phase space
 - different strategy for W + D: no jet reconstruction (ATLAS) vs jet tagging (CMS)
- Significant systematic uncertainties due to
 - Jet energy measurement
 - QCD, W+ jets background estimation
 - c quark fragmentation (fragmentation fraction, function)
 - c-hadron decay (BR, kinematics)

- ATLAS results favour PDF fits with higher s quark content
- CMS more consistent with PDF fit lower s quark content
- · Cannot do a direct comparison of results
 - different phase space
 - different strategy for W + D: no jet reconstruction (ATLAS) vs jet tagging (CMS)
- Significant systematic uncertainties due to
 - Jet energy measurement
 - QCD, W+ jets background estimation
 - c quark fragmentation (fragmentation fraction, function)
 - c-hadron decay (BR, kinematics)

W + c results: cross section

- ATLAS results favour PDF fits with higher s quark content
- CMS more consistent with PDF fit lower s quark content
- Cannot do a direct comparison of results
 - different phase space
 - different strategy for W + D: no jet reconstruction (ATLAS) vs jet tagging (CMS)
- Significant systematic uncertainties due to
 - Jet energy measurement
 - QCD, W+ jets background estimation
 - c quark fragmentation (fragmentation fraction, function)
 - c-hadron decay (BR, kinematics)

W + c results: cross section

- ATLAS results favour PDF fits with higher s quark content
- CMS more consistent with PDF fit lower s quark content
- Cannot do a direct comparison of results
 - different phase space
 - different strategy for W + D: no jet reconstruction (ATLAS) vs jet tagging (CMS)
- Significant systematic uncertainties due to
 - · Jet energy measurement
 - QCD, W+ jets background estimation
 - c quark fragmentation (fragmentation fraction, function)
 - c-hadron decay (BR, kinematics)

W + c results: differential cross section

W + c results: differential cross section

Cross section measurements of heavy flavour quarks production in association

W + c results: $W^+ \overline{c} / W^- c$ cross section ratio

- Most systematics uncertainties cancelled in W⁺ c̄/W⁻ c ratio
- Measurement, sensitive to s/s
 asymmetry, is statistically limited

- *s* PDF known with relatively high uncertainties
- $SU(3) \rightarrow PDF(s) = PDF(\overline{s}) = PDF(\overline{d})$
- Non-perturbative QCD effects \rightarrow possible PDF(s) \neq PDF(d) and also PDF(\overline{s}) \neq PDF(s)
- Strongest constraints to s PDF from neutrino DIS experiment, suffering from modelling of c fragmentation and nuclear corrections
- Fits to these data suggest s-PDF suppressed wrt to d PDF at high x

Different PDF fits (CT10, MSTW, HERA in the plot) predict different levels of SU(3) restoration at small x (LHC region)

- *s* PDF known with relatively high uncertainties
- $SU(3) \rightarrow PDF(s) = PDF(\overline{s}) = PDF(\overline{d})$
- Non-perturbative QCD effects \rightarrow possible PDF(s) \neq PDF(d) and also PDF(\overline{s}) \neq PDF(s)
- Strongest constraints to s PDF from neutrino DIS experiment, suffering from modelling of c fragmentation and nuclear corrections
- Fits to these data suggest *s*-PDF suppressed wrt to *d* PDF at high *x*
- Some fits to NuTeV ν DIS results also introduce s/\overline{s} asymmetry
- Results based only on collider data (HERA + ATLAS W,Z inclusive) predict no s/\overline{d} suppression

PDF(s)/PDF(d) shown for

- NNPDF fit, taking into account ν DIS
- NNPDF_{coll} based solely on collider data
- ATLAS PDF based on HERA data + ATLAS W,Z inclusive measurements

W + c results: r_s measurement

Comparison of ATLAS result with HERA PDF including ν DIS results and with PDF with HERA+LHC results only

W + b-jets

W+b-jets

- CDF Phys.Rev.Lett. 104 (2010) 131801: Run II data, 1.9 ${\rm fb}^{-1}$ @1.96 TeV
- D0 Phys. Lett. B718 (2013) 1314-1320: Run II data, 6.1 fb⁻¹ @ 1.96 TeV
- ATLAS JHEP 06 (2013) 084: 2011 data, 4.6 ${\rm fb}^{-1}$ @ 7 TeV

 \rightarrow previous result Phys.Lett. B707 (2012) 418-437: 2010 data, 36 ${
m pb}^{-1}$ @ 7 TeV

 $\bullet~$ CMS arXiv:1312.6608 , submitted to Phys.Lett. B: 2011 data, 5.0 $\rm fb^{-1}$ @ 7 $\rm TeV$

- Complementary measurements from ATLAS and CMS
 - ATLAS: selection W + 1 *b*-tagged jet + 0-1 jet (any)
 - CMS: selection W + 2 *b*-tagged jets
- *b*-jets, *c*-jets, light-jets fraction in selected events determined with fit to discriminant variable
- control of *c*-jets component is one of the biggest challenges for the measurement
- $t\bar{t}$, single-top, QCD multi-jet determined with similar technique in complementary data samples

W+ b-jets: results ATLAS JHEP 06 (2013) 084

- Measured cross section compared with LO+PS and NLO predictions
- Comparison with Powheg(ME) + Pytha(PS), Alpgen (ME) + Herwig (PS), both with 4FNS item Comparison with MCFM in 5FNS. Prediction at parton level, crorected using factor from Powheg+Pythia sample
- \bullet Differential cross section vs jet p_{T} also measured
- Dominant uncertainties: Jet energy scale and resolution, b-jet selection efficiency
- 25% contribution to $\sigma_{predicted}$, mostly at low p_T , due to Double Parton Interactions, with high uncertainty (40% from ATLAS W + 2 jets DPI measurement)

W+ b-jets: summary of results

All cross sections are fiducial, numbers quoted are $\sigma^{fid} \times BR(W \to \ell \nu)$ Different fiducial phase space, direct comparison of measurements not possible. Recent results solve tension with prediction observed in early measurements

• CDF result: W+ *b*-jets jet-level cross section, $p\overline{p}$ 1.96 TeV

Measurement	Cross section [pb]	NLO prediction [pb]
W+1+b-jets	2.74 ± 0.50	1.22 ± 0.14

• ATLAS results: W + 1 b-jet + 0-1 additional jets, pp 7 TeV

Measurement	Cross section [pb]	MCFM NLO prediction [pb]
W+1 b-jet	5.0 ± 1.3	$3.01^{+0.83}_{-0.62}$
W+1 <i>b</i> -jet $+1$ jet	2.2 ± 0.5	$1.69^{+0.43}_{-0.27}$

• CMS result: W + 2 *b*-jets, *pp* 7 TeV

Measurement	Cross section [pb]	MCFM NLO prediction [pb]
W+2 <i>b</i> -jets	0.53 ± 0.12	0.55 ± 0.06

• D0 result: W + at least 1 <i>b</i> -jet, $p\overline{p}$ 1.96 TeV				
	Measurement	Cross section [pb]	MCFM NLO prediction [pb]	
	W+ b-jets	1.05 ± 0.12	$1.34^{+0.41}_{-0.34}$	

Z + b-jets

Z+ b-jets

- CDF preliminar Z+ b-jets/Z and Z+ b-jets/Z+ jets, note 10594: Run II data, 7.9 ${\rm fb}^{-1}$ @ 1.96 ${\rm TeV}$
 - \rightarrow previous result Phys. Rev. D 79, 052008 (2009), 2.0 fb⁻¹
- D0 Z+ b-jets/Z+ jets ratio, Phys. Rev. D 87, 092010 (2013): Run II data, 9.7 fb⁻¹ @ 1.96 TeV
- ATLAS Phys.Lett. B706 (2012) 295-313: 2010 data, 36 pb⁻¹ @ 7 TeV
- CMS JHEP06 (2012) 026: 2011 data, 2.2 fb⁻¹ @ 7 TeV
- CMS $Z + b\overline{b}$ angular correlations, JHEP12 (2013) 039: 2011 data, 5.2 fb⁻¹ @ 7 TeV
- $\bullet~$ CMS arXiv:1402.1521, submitted to JHEP: 2011 data, 5 ${\rm fb}^{-1}$ @ 7 ${\rm TeV}$

Cross section	Measured	MadGraph	aMC@NLO	MCFM	MadGraph	aMC@NLO
		(5F)	(5F)	(parton level)	(4F)	(4F)
$\sigma_{\rm Z+1b}$ (pb)	$3.52 \pm 0.02 \pm 0.20$	3.66 ± 0.22	$3.70^{+0.23}_{-0.26}$	$3.03^{+0.30}_{-0.36}$	$3.11_{-0.81}^{+0.47}$	$2.36\substack{+0.47 \\ -0.37}$
σ_{Z+2b} (pb)	$0.36 \pm 0.01 \pm 0.07$	0.37 ± 0.07	$0.29\substack{+0.04\\-0.04}$	$0.29\substack{+0.04\\-0.04}$	$0.38\substack{+0.06\\-0.10}$	$0.35\substack{+0.08\\-0.06}$
$\sigma_{\rm Z+b}$ (pb)	$3.88 \pm 0.02 \pm 0.22$	4.03 ± 0.24	$3.99\substack{+0.25\\-0.29}$	$3.23\substack{+0.34\\-0.40}$	$3.49\substack{+0.52\\-0.91}$	$2.71\substack{+0.52 \\ -0.41}$
$\sigma_{Z+b/Z+j}$ (%)	$5.15 \pm 0.03 \pm 0.25$	5.35 ± 0.11	$5.38\substack{+0.34 \\ -0.39}$	$4.75\substack{+0.24 \\ -0.27}$	$4.63^{+0.69}_{-1.21}$	$3.65\substack{+0.70\\-0.55}$

- Results provided for Z+1 b-jet and Z+2 b-jets important to get full picture
- Comparison with different predictions
 - uncertainties on MadGraph 5FNS treated taking into account correlations are significantly smaller
 - biggest discrepancies in predictions are between 4FNS and 5FNS
 - MCFM predictions at parton level, but difference with measurements not due to hadronization (correction factor <1)
 - significant discrepancy with AMC@NLO in 4FNS
- Measurements at same level of precision of predictions

Z+ b-jets results: CMS arXiv:1402.1521

• $p_{\rm T}$ spectra harder in measurements than predictions

- Angular correlation of bb pair in Z + bb production interesting as described with significant theoretical uncertainties
- E.g. in 2HDM studies, with $\phi_1 \rightarrow Z \phi_2$ and $\phi_2 \rightarrow b \overline{b}$ if $m_{\phi_1} m_{\phi_2}$ is large *b* quarks are collinear
- Measurement done with identification of b-hadrons from displaced vertex, independently of jet reconstruction
- $qq, qg \rightarrow ZbbX$ and and $gg \rightarrow ZbbX$ give different distributions in different kinematics regions

background estimation form sidebands of mass distribution

Contribution of

- $qq, qg \rightarrow ZbbX$ diagrams (brown)
- $gg \rightarrow ZbbX$ diagrams (blue)

as a function of $\Delta\phi_{b\overline{b}}$

Measured and predited cross section as a function of $\Delta\phi_{b\overline{b}}$

Data/MC agreement is worse in low $\Delta \phi_{b\overline{b}}$ region (i.e. for collinear B hadrons)

- W+ jets and Z+ jets studied with high precision at the Tevatron and Large Hadron Collider
- Predictions and Monte Carlo simulation have been tested, finding in general good agreement, with potential for improvement/tuning especially in "extreme" kinematic regions
 - · scale uncertainties are a limiting uncertainty for predictions
- W+ b-jets and Z+ b-jets results at level of precision of predictions
 - · good agreement of integrated results, shown possible tension in kinematics description
 - results sensitive to difference between 4-flavour and 5-flavour calculation schemes
 - $\, \bullet \,$ tuning of $g \rightarrow b \overline{b} \, \, {\rm MC}$ description possible exploiting experimental results
- W + c results provide fundamental constraints for *s* quark PDF, which needs to be included in PDF fits
 - ATLAS favouring enhanced s content of the proton, while CMS prefers a lower s quark PDF

What do we want to learn in the near future: 2012 LHC dataset

- For *W*+ jets and *Z*+ jets main interest in "extreme" kinematics regions (high boson/jet p_T high E_T^{miss} ,...) and for events with large scale differences (e.g. leading jet with very hight p_T)
 - large higher order corrections play important role in those regions, must test pQCD
 - $\bullet\,$ these regions are interesting for searches, need reliable description of $W+\,$ jets and $Z+\,$ jets
- W + c results could significantly improve with bigger dataset
 - c tagging and jet energy measurements are dominant systematics for the measurement
 - also background determination suffer from limited statistics
 - $W^+\overline{c}/W^-c$, sensitive to s/\overline{s} PDF asymmetry, is statistically limited
- An improvement in W+b-jets and Z+b-jets differential measurements could be a probing test for MC description
 - ${\scriptstyle \bullet}\,$ furthermore, potentially these final states can probe b PDF for the 5 flavour scheme

Next LHC run

- $\bullet~$ LHC run II @ 13-14 $\rm TeV$
- Will need new round of MC tuning with measurements, for W+ jets and Z+ jets possible with early data
- One of the challenge (especially for W) will be in the definition of a suitable trigger menu $\rightarrow W + D$ could be difficult
- Top background will become even more relevant
- · For heavy flavour tagging jet substructure will be studied more closely

Theoretical developments

- With recent development of automatised code for NLO calculations, we can expect many processes calculated with NLO accuracy (V+ n jets...)
- Heavy flavour tagging will soon need more solid theoretical ground (IR, collinear safe definition of jet flavour, dependence on fragmentation/hadronization, ...)