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Quark-Hadron Duality

Intersection of pQCD and nonperturbative QCD

Strong coupling constant at low energy

Hadronic scale

Initial conditions from nonperturbative QCD

Large-x PDFs matter!

Based on collaboration with S. Liuti
Phys.Lett. B726 (2013)

and work(s) in progress



Quantum ChromoDynamics

9. Quantum chromodynamics 31

Notwithstanding these open issues, a rather stable and well defined world average
value emerges from the compilation of current determinations of αs:

αs(M
2
Z) = 0.1184 ± 0.0007 .

The results also provide a clear signature and proof of the energy dependence of αs, in
full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in
Fig. 9.4, where results of αs(Q2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized and plotted.

Figure 9.4: Summary of measurements of αs as a function of the respective energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).
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Quantum ChromoDynamics
Hadron ⇔ ``Constituent” quarks  ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Evolution in Q2



Hard probes

Deeper in the structure

        

proton

parton

photon
electron

Parton Model

Q2⇾∞

Kinematics of the Bjorken scaling
Q2→∞
p.q→∞

Q2/2p.q≡x=finite

X

d�

d⌫dQ2
/ lµ⌫W

µ⌫



Parton Distribution Functions

Factorization
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In the Bjorken limit, 
hadronic tensor dominated by the light-cone z2~0

→  can be “ordered” by OPE
Jμ(0) Jν(z)

Non-perturbative part=PDF
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Leading order structure

− −
Vector Axial vector Tensor

   U target                                                                 LP target                                                                      TP target

 f1(x)                                       g1(x)                                           h1(x)

Selection of  the QCD operator       

PDFs are universal



Leading order structure

− −
Vector Axial vector Tensor

   U target                                                                 LP target                                                                      TP target

 f1(x)                                       g1(x)                                           h1(x)

Selection of  the QCD operator       

That’s the well-known ``PDF”

PDFs are universal



Scaling violations

Image credit: DESY Hamburg



Structure Functions and DIS

Scaling violations lead to 

Q2-dependence of the Structure Functions

 DGLAP equations 
            [Dokshitzer–Gribov–Lipatov Altarelli-Parisi]

 Jargon: “Q2  or QCD evolution”

Parton Model
Bjorken scaling
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Figure 3: Factorisation with QCD corrections in deep inelastic scattering.

1. Now we also have a nonperturbative contribution corresponding to the possibility of scattering
off a gluon in the hadron.

2. The momentum fraction of the parton leaving the hadron is denoted by y, where y ≥ x since some
of the original momentum may be lost by branching to other particles before the scattering with
the photon which defines the variable x.

3. The infrared singularities in the coefficient functions which have been regularised by µF must be
absorbed into the nonperturbative definition of Γ(P, k) rendering it µF dependent when we include
QCD corrections. This is natural because the singularities come from the infrared limit of the
integral over k where the coupling is strong and really we should be using nonperturbative physics.
The divergences are determined entirely in terms of the incoming parton, and are independent of
the particular scattering process as long as it is one which sums over final states, though we can
be slightly less inclusive and define e.g. final state jets.

It is important to recognise that F (x,Q2) as a potentially measurable physical quantity must be
independent of µF . In general for vectors Ai, Bi

µF
d

dµF

(

AiBi

)

= 0 ⇒ µF
d

dµF

Ai = −AjPji , µF
d

dµF

Bi = PijBj , (33)

for some Pij. The integral convolution in Eq. (31) can be regarded similarly as a form of matrix
multiplication for two µF -dependent factors. The analogous version of the equations for A,B in Eq.
(33) become integral relations

µF
d

dµF

Ci

(

x,
Q2

µ2
F

;αS

)

= −
∑

j=qf ,qf ,g

∫ 1

x

dy

y
Cj

(

y,
Q2

µ2
F

;αS

)

Pji

(x

y
;αS

)

, (34)

µF
d

dµF

fi(y, µ
2
F ) =

∑

j=qf ,qf ,g

∫ 1

y

dz

z
Pij

(y

z
;αS

)

fj(z, µ
2
F ) , (35)

8

where the Pij(y;αS) are determined by the form of the infrared divergences regularised by µf and
absorbed into the nonperturbative definition of the partons. As such they are independent of Q2, the
particular current J and the hadron H , and may be determined as an expansion in αS from Eq. (34).
In general all components of Pij(y;αS) are non zero.

The equations (34,35), are referred to as the DGLAP equations[10, 11, 12, 13], and the perturba-
tively calculable Pij(y;αS) are known as splitting functions. They were effectively derived as anoma-
lous dimensions of operators within the context of the renormalisation group and operator product
expansion[14, 15]. The coefficient functions and splitting functions were obtained at next to lead-
ing order (NLO) (O(αS) for the coefficient functions and O(α2

S) for splitting functions) within a few
years[16, 17, 18, 19, 20, 21, 22, 23]. In these above equations we should take αS → αS(µ2

R) the running
coupling. It is important to note that αS(µ2

R) is a function of the renormalisation scale µR not the fac-
torisation scale µF since its running is determined by the renormalisation of the ultraviolet divergences
in the theory, and is nothing to do with the infrared regularisation which introduces µF .

Since µR and µF are arbitrary we may choose their values independently. However, it is natural,
and very common to set µ2

R = µ2
F = Q2 so that Eq. (31) becomes

F (x,Q2) ∼
∑

i=qf ,qf ,g

∫ 1

x

dy

y
Ci

(x

y
, 1;αS(Q

2)
)

fi(y,Q
2) ≡

∑

i=qf ,qf ,g

Ci(αS(Q
2))⊗ fi(Q

2) , (36)

where from (35)

Q
d

dQ
fi(y,Q

2) =
∑

j=qf ,qf ,g

∫ 1

y

dz

z
Pij

(y

z
;αS(Q

2)
)

≡
∑

j=qf ,qf ,g

Pij(αS(Q
2))⊗ fj(Q

2) . (37)

The results Eq. (36) and Eq. (37) then provide the justification for the claim that asymptotic freedom
allows the Q2 evolution of F (x,Q2) to be calculated perturbatively in the deep inelastic limit. Hence,
once we have measured the parton distributions at some low scale Q2

0 we can calculate their evolution
to higher scales perturbatively. Comparison of theory and data on structure functions and their scaling
violations works extremely well, and is one of the best tests of QCD.

We can apply the same sort of reasoning as above to hadron-hadron collisions. The coefficient
functions Ci(x,αS(µ2)) describing a particular hard scattering process involving incoming partons are
process dependent but are calculable as a power-series in the strong coupling constant αS(µ2).

CP (x,αS(µ
2)) =

∑

k

CP,k(x)αk
s(µ

2).

The scale of the coupling will be set by the hard scale q2 in the particular process, e.g. if one produces a
particle with large mass m in the final state then q2 = m2. If there is no hard scale in the perturbative
scattering process, e.g. if we simply have proton-proton scattering to hadrons with no identified hard
final state, perturbation theory cannot be reliably used. Since the parton distributions fi(x, q2) are
process-independent, i.e. universal, once they have been measured at one experiment, one can predict
many other scattering processes. Consider for example the diagram for proton-proton scattering to
form hadrons plus a Higgs boson, a contribution to which is shown in Fig. 4.

The definition of the parton distributions is exactly the same for this diagram as it is in Deep
Inelastic Scattering. Hence, once we calculate CH

ij (xi, xj ,αS(m2
H)) we can calculate the cross section for

Higgs production at a proton-proton collider, i.e. the Tevatron and/or Large Hadron Collider (LHC).
This is given simply by

σH(x1, x2, m
2
H) =

∑

i,j=qf ,qf ,G

∫ 1

x1

∫ 1

x2

dy1
y1

dy2
y2

CH
ij

(x1

y1
,
x2

y2

m2
H

µ2
;αS

)

fi(y1, µ
2)fj(y2, µ

2) , (38)
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Factorization

Q2 evolution→DGLAP equations

Choice of factorization scheme !



PDFs are non-perturbative objects

related to confinement and chiral symmetry

transition of degrees of freedom

related to angular momentum (of quarks and gluons)

...

little first principles based constraints

QCD sum rules, symmetries, ...

evaluated in models for hadron structure

fitted from data (Q2 behavior = pQCD)

Resolution matters  NonPerturbative scales
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Parton Distributions from Experiments
Where?

DIS: eP→eX 
Drell-Yan: PP→l+l-X
jets ...

How?

fit from scale Q02

functional form

treatment of error

In such case, it can be shown [86] that minimization of the χ2 in Equation 2.18 would lead

to biased results. Various ways of dealing with this problem are discussed in Reference [87],

and a recent summary of the approach adopted by various PDF fitting groups is in the

appendix of Reference [45].

2.2.2 Parton Parametrization

A set of PDFs is a set of functions, one for each parton entering the factorized expressions

in Equations 2.1 and 2.13. Because PDFs at different scales are related by the evolution

equations, the goal is to determine a set of functions for 0 < x < 1 at some reference scale

Q2
0.

There are in principle thirteen independent PDFs in a given hadron (six quarks and

antiquarks and the gluon); however, in practice, charm and heavier quark PDFs in the nu-

cleon are not independently determined in all current PDF sets, and are instead assumed

only to be generated by QCD radiation. The (moderate) impact of introducing an indepen-

dent (non-perturbative) charm PDF, so that charm does not vanish below the threshold

for its radiation (“intrinsic” charm [88]) has been studied in References [27, 89]. While in

the past some relations between PDFs (such as, for example, equality of the strange and

antistrange PDFs) have been introduced by assumption, the standard for current precision

studies is to have a set of seven independent PDFs. In practice, in many cases, it turns

out to be convenient to express the six light quark PDFs as suitable linear combinations,

like the singlet combination of Equation 2.15.

Once a suitable set of basis PDFs has been chosen, all existing PDF determinations

are based on choosing a parametrization of PDFs at the reference scale. A standard choice,

adopted by most PDF fitting groups, is to assume that

fi(x,Q
2
0) = xαi(1− x)βigi(x), (2.22)

where gi(x) tends to a constant for both x → 0 and x → 1. This choice is motivated by the

expectation that PDFs behave as a power of x as x → 0 due to Regge theory, and as a power

of (1 − x) as x → 1 due to quark counting rules (see, e.g., Reference [90] and references

therein). Specific choices for the function gi(x) differ between groups. Common choices are

a polynomial or the exponential of a polynomial in x or
√
x, with more parameters used to

describe PDFs for which more information is available (such as the gluon) in comparison

to those (such as the strange PDF) that are poorly constrained by the data. Typical

contemporary PDF sets based on this choice of functional form are parametrized by about

20–30 parameters (see Section 3 for a detailed discussion).

An altogether different option is to parametrize PDFs with a general functional form

which does not incorporate any theoretical prejudice. Two options that have been con-

sidered recently are neural networks [29–31] and Chebyshev polynomials [91], though only

in the former case has a full-fledged PDF set been constructed. In this context, neural

networks just provide a convenient unbiased set of (nonlinear) basis functions. The neural

networks used for PDF parametrization in References [29–31] are multilayer feed-forward

neural networks, one for each PDF and all with a fixed architecture (and thus number of

– 11 –

realistic results are obtained thus by assuming that the 68% confidence level is obtained by

letting ∆χ2 = T 2, where T is a “tolerance” parameter, in turn determined by studying the

distribution of best-fit parameter values among experiments, e.g., imposing that indeed 90%

of experiments approximately fall within the 90% confidence level. More refined methods

involve determining a different tolerance [27] along each Hessian eigenvector (“dynamical”

tolerance).

An obvious advantage of the Hessian method is that it allows for a compact repre-

sentation and computation of PDF uncertainties, by simply providing eigenvectors of the

Hessian matrix rescaled by their respective eigenvalues, i.e., in practice, PDF sets which

correspond to the variation by a fixed amount (such as one-sigma, or 90% C.L.) along the

direction of each eigenvector. PDF uncertainties on the PDFs themselves, or any observ-

ables that depend on them, are then simply found by adding in quadrature the variation

along each direction. So in a Hessian approach one delivers a central set of PDFs S0, and

Npar one-sigma error sets Si, corresponding to the variation of each eigenvector in turn.

The best-fit value of any quantity F (S) which depends on the PDF set (such as a cross

section, or a PDF itself), and its one-sigma uncertainty, are respectively:

F0 = F (S0), σF =

√

√

√

√

Npar
∑

i=1

[F (Si)− F (S0)]
2. (2.23)

(In practice, a slightly more complicated formula is often used that gives asymmetric uncer-

tainties). The price to pay for this (besides the need to use linearized error propagation)

is that Hessian determination and diagonalization rapidly become unmanageable if the

number of parameters is too large.

An alternative way of representing probability distributions in the space of PDFs is the

Monte Carlo method, whereby the probability distribution of PDFs is given by assigning

a Monte Carlo sample of PDF replicas, namely Nrep PDF sets Sk. Any feature of the

probability distribution can be determined from the Monte Carlo sample. So, the best-fit

value of any quantity F (S) which depends on the PDF set (such as a cross section, or a

PDF itself) is now determined as its expected value, namely as the mean over the replica

sample:

F0 =
1

Nrep

Nrep
∑

k=1

F (Sk), (2.24)

while the one-sigma interval is now computed as a standard deviation

σF =

√

√

√

√

1

Nrep − 1

Nrep
∑

k=1

[F (Sk)− F0]
2. (2.25)

The obvious advantage of the Monte Carlo method is that it does not require assumptions

to be made on the form of the probability distribution in parameter space, and also that

it provides a direct representation of the probability distribution, which is convenient for

many applications, as we shall see shortly.
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NNPDF2.3 data set

S.Forte & G.Watt
Ann.Rev.Nucl.Part.Sci. 63 (2013)

ABM
HERAfitter
CTEQ
MSTW
NNPDF
SOMPDF

Who?



Improvements?

Uncertainties for PDF from Low Energy

Standard approach for fitting PDF: arbitrary Q02>1GeV2

Value of αs(MZ2) differs for each set 
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   Dynamical GJR parameterization: Q02 as a guideline ! 

➡  Valence vs. radiative behaviour

➡  Q02  turns out to be of the order of 0.5GeV2  (with ΛNLOnf=3~303MeV)

  Non-perturbative input needed!



Input vs. Hadronic scale

input scale uncertainty studied in GJR/JR

procedural bias

red band: experimental uncertainty

uncertainty from scale

~ order of magnitude as exp. unc.

P. Jimenez-Delgado 
Physics Letters B 714 (2012)
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What does a low μ02~0.2GeV2  +Δμ02 means?

NLO α exact solution (Λ=0.402GeV)

Approaching the Landau pole...

guess for MSTW08NLO
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The non-perturbative approach:

Importance of finite couplings

Taming the Landau pole 

   The non-perturbative interpretation:

Effective couplings from phenomenology

Dimensional transmutation (RG-improved)

 from RS dependence to Observable dependence (à la Grunberg)

NLO α exact solution (Λ=0.402GeV)

Alkofer & Fisher

Shirkov LO

Mattingly & Stevenson

Cornwall
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Uncertainty on the hadronic scale 

Cornwall’s massive gluon approach

LO perturbative evolution Λ=250 MeV ; M̅S̅ scheme
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Need to better constrain Q02!
Strong correlation with dof 
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Quark-hadron duality
Introduction (2)

Present in Nature in different aspects:

• e+ - e− → hadrons ≡
∑

q (e+e− → qq̄) ⇒ σhadrons ≡
∑

q

σ̂q

• ep → eX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)dσ̂q

• ep → ehX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)Dh(z,Q2)dσ̂q

• e→p
⇒⇐ → e→X

• eA → eX

• τ → ν+ hadrons

• semi-leptonic decay of heavy quarks

• γp → π+ + n

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 3

Complementarity between Parton and Hadron descriptions of observable

 [Poggio, Quinn & Weinberg, Phys Rev D13]

averaged hadronic cross section ⇔ averaged quark cross section
⇒ Smearing techniques



Bllom-Gilman duality

When x→1, →elastic scattering

Exclusive scattering

Intertwine with resonance region

Bloom-Gilman Duality
Resonances created in electroproduction 
are a substantial part of the observed 
scaling behaviour of inelastic electron-proton scattering

Structure functions 
Resonance region ⇔ Scaling region

xBj>0.5, Q2 multi-GeV region ⇒ 1.2<W2≤4GeV2 

[Bloom & Gilman, Phys.Rev.Lett.25]



Duality and QCD

``Finite Energy Sum Rule "

 For review see [Melnitchouk et al, Phys.Rep 406]
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Duality and QCD

``Finite Energy Sum Rule "

 For review see [Melnitchouk et al, Phys.Rep 406]
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experiment theory



Duality and QCD

``Finite Energy Sum Rule "

 For review see [Melnitchouk et al, Phys.Rep 406]
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Recipe for a perturbative analysis

• Target Mass Corrections (TMC)
• NLO in αs in  pQCD

experiment theory



Violation of Bloom-Gilman Duality
low-Q2 SF have strong Q2 dependence

violates scaling & duality

. 

duality implies  leading-twist only !

duality gives info on size of nonperturbative corrections

 [Malace et al, PRC80]

F (x,Q2) = F

(2)(x,Q2) +
F

(4)(x,Q2)

Q

2
+ . . .



Intersection of pQCD & non-perturbative QCD

experiment theory

Recipe for a perturbative analysis

• Target Mass Corrections (TMC)
• NLO in αs in  pQCD

Non perturbative info ?

• Higher-Twists
• LxR in definition of αs
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F2 in perturbative QCD

In practice:

1.  DGLAP

2. convolution with coefficient functions
Is it still true at large-x ?

1. q0→ leading-twist  PDFs
here MSTW08NLO

2. q0→ evolved to  q(x, Q2) via DGLAP 
with

P→ splitting functions, to NLO

3. C→ coefficient functions, to NLO
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Target Mass Corrections

Effects associated with the mass of the target

 infinite vs. finite target mass ⇒ Bjorken vs. Nachtmann variable

, ...., Accardi & Qiu (2008)

[J. Phys. G: Nucl. Part. Phys. 35]
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2

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,
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The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F

NS,th

2 as [34] (see also review in [35]),
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where F

1
2 ⌘ F

NS

2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B

q

NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for

4
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with µ = M2/Q2. The structure function F
(0)
2 appearing in the integrals in equations (18)

and (20) is a decreasing function of x or ξ (see e.g. figure 10 below). Consequently,
F

(0)
2 can be evaluated at the lower integral limit, giving h2(ξ) <
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2 (ξ)(− ln ξ − 1 + ξ). One then arrives at the following inequality:
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The expressions (6µxξ/r)(1 − ξ) and (12µ2x2ξ 2/r2)(− ln ξ − 1 + ξ) can be easily evaluated
to obtain an upper bound for the contribution of the non-leading terms. Following the same
line of argumentation one finds for the structure function F3:

F TMC
3 (x,Q2) <

x

ξr2
F

(0)
3 (ξ)

[
1 − 2µxξ

r
ln ξ

]
. (60)

While the upper bounds for F TMC
2 and F TMC

3 are strictly satisfied for x and Q2 values relevant
for target mass corrections, these bounds are of limited practical use. For example, for
Q2 = 1 GeV2, equation (59) places a limit on the non-leading corrections to be less than
∼65% of the leading term at large x. The actual value is much less, below ∼21%. Therefore
it is useful to note that
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Data analysis:  F2 at JLab

include LxR e↵ects. A consequence of LxR is that as x increases there is a shift to lower
values of the scale at which ↵

s

is calculated (see for instance Ref. [11] or the classical review
in Ref.[12]). At large x and low W

2, this shift requires a freezing of the coupling constant
in the infrared region.

The key result in the present work is that, by turning this argument around, or by using
the fact that our analysis, through LxR, is regulated by the value of the QCD coupling in
the infrared region, we can extract such coupling from experimental data. In our analysis
canonical higher-twist terms are suppressed in that their separate contributions to the per-
turbative curve to be compared to the large x data is negligible. However, nonperturbative
e↵ects are present as they become absorbed in the coupling’s infrared behavior.

The extracted coupling we obtain is consistent with schemes of scale fixing in which
↵

s

can be extended to the entire Q

2 domain. Various frameworks have been proposed
where the e↵ective coupling is free of the Landau pole, e.g., the BLM scheme [13] and its
recent extension using the Principle of Maximum Comformality [14], methods based on the
analyticity properties of ↵

s

[15, 16], and finally, including nonperturbative e↵ects [17–20]
(see also Refs. [21, 22] where ↵

s

was defined introducing nonperturbative e↵ects fixed by
a physical set of parameters). While the focus of the present manuscript is on suggesting
a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.

2. In order to evaluate the e↵ect of LxR we perform a fit of all available large x, eP

inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
that the scope of the present fit is not towards a global analysis, but to assess the possible
interplay among the di↵erent components that impact Q

2 evolution at large x, including
LxR, TMCs, and HTs. In the resonance region, W 2  4 GeV2, we consider averages of both
data and theoretical evaluations by comparing limited intervals defined as,

R

exp/th(Q2) =

R
xmax(W 2=1.2GeV2)

xmin(W 2=4GeV2)
dxF

exp

2 (x,Q2)R
xmax(W 2=1.2GeV2)

xmin(W 2=4GeV2)
dxF

th
2 (x,Q2)

. (1)

In the present analysis, we use, for F

exp

2 , the data from JLab (Hall C, E94110) [23]
reanalyzed (binning in Q

2 and x) as explained in [24] as well as the SLAC data [25]. The
values of Q2 and the average values of x for each interval are given in Table I. The function
F

th
2 is the theoretical evaluation which is the same in both the DIS and resonance, Eq. (1),

regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be

3

Q

2 [GeV2] xave I

exp(Q2)

1.75 0.516 6.994⇥10�2

2.5 0.603 4.881⇥10�2

3.75 0.702 2.356⇥10�2

5. 0.753 1.267⇥10�2

6.5 0.800 0.685⇥10�2

4. 0.712 2.045⇥10�2

5. 0.755 1.255⇥10�2

6. 0.787 0.802⇥10�2

7. 0.812 0.531⇥10�2

8. 0.832 0.363⇥10�2

TABLE I: Upper block: Integrals of JLab data from Refs. [23, 24], appearing in the numerator of
Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18

R
d

x
F

ex
p

2
(x
,Q

2
)

R
d

x
F

th 2
(x
,Q

2
)

Q2

MSTW

MSTW+TMC

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18

R
d

x
F

ex
p

2
(x
,Q

2
)

R
d

x
F

th 2
(x
,Q

2
)

Q2

MSTW

MSTW+TMC
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exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
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Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.
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(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
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include LxR e↵ects. A consequence of LxR is that as x increases there is a shift to lower
values of the scale at which ↵

s

is calculated (see for instance Ref. [11] or the classical review
in Ref.[12]). At large x and low W

2, this shift requires a freezing of the coupling constant
in the infrared region.

The key result in the present work is that, by turning this argument around, or by using
the fact that our analysis, through LxR, is regulated by the value of the QCD coupling in
the infrared region, we can extract such coupling from experimental data. In our analysis
canonical higher-twist terms are suppressed in that their separate contributions to the per-
turbative curve to be compared to the large x data is negligible. However, nonperturbative
e↵ects are present as they become absorbed in the coupling’s infrared behavior.

The extracted coupling we obtain is consistent with schemes of scale fixing in which
↵

s

can be extended to the entire Q

2 domain. Various frameworks have been proposed
where the e↵ective coupling is free of the Landau pole, e.g., the BLM scheme [13] and its
recent extension using the Principle of Maximum Comformality [14], methods based on the
analyticity properties of ↵

s

[15, 16], and finally, including nonperturbative e↵ects [17–20]
(see also Refs. [21, 22] where ↵

s

was defined introducing nonperturbative e↵ects fixed by
a physical set of parameters). While the focus of the present manuscript is on suggesting
a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.

2. In order to evaluate the e↵ect of LxR we perform a fit of all available large x, eP

inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
that the scope of the present fit is not towards a global analysis, but to assess the possible
interplay among the di↵erent components that impact Q

2 evolution at large x, including
LxR, TMCs, and HTs. In the resonance region, W 2  4 GeV2, we consider averages of both
data and theoretical evaluations by comparing limited intervals defined as,
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xmin(W 2=4GeV2)
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. (1)

In the present analysis, we use, for F

exp

2 , the data from JLab (Hall C, E94110) [23]
reanalyzed (binning in Q

2 and x) as explained in [24] as well as the SLAC data [25]. The
values of Q2 and the average values of x for each interval are given in Table I. The function
F

th
2 is the theoretical evaluation which is the same in both the DIS and resonance, Eq. (1),

regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be
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Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].
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exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
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Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function
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(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
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NS(z) become very large at large x values. They need to be resummed to all orders in
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kinematical variable that determines the phase space for the radiation of gluons at large x.
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include LxR e↵ects. A consequence of LxR is that as x increases there is a shift to lower
values of the scale at which ↵

s

is calculated (see for instance Ref. [11] or the classical review
in Ref.[12]). At large x and low W

2, this shift requires a freezing of the coupling constant
in the infrared region.

The key result in the present work is that, by turning this argument around, or by using
the fact that our analysis, through LxR, is regulated by the value of the QCD coupling in
the infrared region, we can extract such coupling from experimental data. In our analysis
canonical higher-twist terms are suppressed in that their separate contributions to the per-
turbative curve to be compared to the large x data is negligible. However, nonperturbative
e↵ects are present as they become absorbed in the coupling’s infrared behavior.

The extracted coupling we obtain is consistent with schemes of scale fixing in which
↵
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can be extended to the entire Q

2 domain. Various frameworks have been proposed
where the e↵ective coupling is free of the Landau pole, e.g., the BLM scheme [13] and its
recent extension using the Principle of Maximum Comformality [14], methods based on the
analyticity properties of ↵

s

[15, 16], and finally, including nonperturbative e↵ects [17–20]
(see also Refs. [21, 22] where ↵

s

was defined introducing nonperturbative e↵ects fixed by
a physical set of parameters). While the focus of the present manuscript is on suggesting
a way of extracting the running coupling from data, more detailed future studies will be
dedicated to connecting our approach to the mentioned schemes.

2. In order to evaluate the e↵ect of LxR we perform a fit of all available large x, eP

inclusive scattering data. We start from standard parametrizations of the PDFs, and we
consider systematically the e↵ects of TMCs, and perturbative evolution using either NLO or
next-to-leading log (NLL) resummed coe�cient functions, i.e., with and without LxR. Note
that the scope of the present fit is not towards a global analysis, but to assess the possible
interplay among the di↵erent components that impact Q

2 evolution at large x, including
LxR, TMCs, and HTs. In the resonance region, W 2  4 GeV2, we consider averages of both
data and theoretical evaluations by comparing limited intervals defined as,
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In the present analysis, we use, for F

exp

2 , the data from JLab (Hall C, E94110) [23]
reanalyzed (binning in Q

2 and x) as explained in [24] as well as the SLAC data [25]. The
values of Q2 and the average values of x for each interval are given in Table I. The function
F

th
2 is the theoretical evaluation which is the same in both the DIS and resonance, Eq. (1),

regions. Notice that if Eq. (1) is equal to 1, duality is fulfilled. Since x is integrated over
the entire resonance region, we are considering global duality.

The OPE formulation of quark-hadron duality [26] suggests that the higher-twist contri-
butions to the scaling structure function would either be small or cancel otherwise duality
would be strongly violated. However, the role of the higher-twist terms is still unclear
since they would otherwise be expected to dominate the cross section at x ! 1. To an-
swer the question of the nature of a dual description, two complementary approaches have
been adopted. The first is the nonperturbative model’s view on the scaling of the structure
functions at low-energies [27–29]; the second approach consists in a perturbative analy-
sis [9, 10, 30], that through LxR provides a scenario by which the e↵ect of HTs can be
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exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
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Large-x resummation
Amati et al., Nucl.Phys. B173 (1980) 429

Without LxR, upper limit =Q2

• Large invariants: Λ2≪W2~Q2

•  Argument for αs is s, mass square of final state of γ* parton collision

DGLAP

3 z-dependent DGLAP: LxR

We consider the large-x resummation. We should restate here the arguments of Dok-
shitser et al. as explained in Ref. [3]. TO DO.
The large ln(1 � z) terms are naturally associated with phase-space limitation on real
gluon emissions. So, these large terms may be summed by correct kinematics.

Figure 1: Subprocess real gluon emission
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Many ways to implement LxR
Our strategy

 We don’t touch the DGLAP part

 Resummation at the coefficient function level :

 Divergent term at x→1,

suppressed in a fully quantitative fit at large x. It is this second approach that we will
follow in this paper.

We evaluate F

th
2 taking into account perturbative evolution at NLO, and introduce sub-

sequently the e↵ects of TMCs, and LxR. Since only valence quarks distributions are relevant
in our kinematics, we consider only the Non Singlet (NS) sector,

F
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2 (x,Q2) = xq(x,Q2) +
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, (2)

The PDFs, q(x,Q2), are taken from current parametrizations. We have chosen to present
results using the MSTW08 set at NLO as initial parametrization [31]. We have checked
that there were no significant discrepancies when using other sets, i.e., CTEQ6 [32] and the
dynamical GJRFVNS [33]. The function B

q

NS is the Wilson coe�cient function for quark-
quark.

By evaluating the ratios Rexp/th, using current parametrizations, one finds a sensible de-
viation from the data, even when the theoretical uncertainty from the parametrizations
is included (Figure 1). One possible explanation is in the lack of accuracy in the PDF
parametrizations in the large x, low W

2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
to take the preparatory step, conducted with the present analysis, of assessing the relative
weight of the di↵erent contributions.

The additional corrections due to the finite mass of the initial nucleon, or the TMCs, are
included directly in F

NS,th

2 as [34] (see also review in [35]),
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NS(TMC)
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where F

1
2 ⌘ F

NS

2 is the structure function in the absence of TMC. Since TMC should in
principle be applied also to the HT, we disregard terms of O(1/Q4) [36]. Note that the
expansion in Eq. (3) is valid for Q

2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.

Next, we consider LxR e↵ects. A major consequence of LxR is a shift of the scale at
which ↵

s

is calculated to lower values, with increasing z (see for instance Refs. [11, 12, 38]).
This introduces a model dependence within the PQCD approach in that the value of the
QCD running coupling in the infrared region is regulated by LxR so as to satisfy duality.
In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.

LxR arises formally from terms containing powers of ln(1 � z), z being the longitudinal
variable in the evolution equations, that are present in the Wilson coe�cient functions
B

q

NS(z), in Eq. (2). To NLO and in the MS scheme, the Wilson coe�cient function for

4

Q

2 [GeV2] xave I

exp(Q2)

1.75 0.516 6.994⇥10�2

2.5 0.603 4.881⇥10�2

3.75 0.702 2.356⇥10�2

5. 0.753 1.267⇥10�2

6.5 0.800 0.685⇥10�2

4. 0.712 2.045⇥10�2

5. 0.755 1.255⇥10�2

6. 0.787 0.802⇥10�2

7. 0.812 0.531⇥10�2

8. 0.832 0.363⇥10�2

TABLE I: Upper block: Integrals of JLab data from Refs. [23, 24], appearing in the numerator of
Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].
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FIG. 1: Ratio R

exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.
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where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function
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qq

(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
in B

q

NS(z) become very large at large x values. They need to be resummed to all orders in
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. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f
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2(1� z)/z, instead of Q2 [11, 39]. As a result, the argument
of the strong coupling constant becomes z-dependent [40],
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quark.
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2 domain, since most groups implement much larger
thresholds for W 2. The way to a fully quantitative fit would then start from re-fitting the
large x data with new appropriate sets of PDFs, and simultaneously accounting for both
TMCs, and LxR. The number of parameters, and the uncertainty associated with this pro-
cedure would however be dauntingly increasing. For this reason, it is therefore necessary
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2 larger than ⇡ 1 GeV2. TMCs move the ratio closer
to unity, as represented by the open green diamonds in Fig. 1. Uncertainties on TMCs are
very small [36]. However a larger error might arise from the procedure used to account for
TMCs [37]. Studies of the sensitivity to this procedure are on their way and will be published
elsewhere. At this stage, by including only TMCs and standard PDF parametrizations, we
still observe a large discrepancy with the data.
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This introduces a model dependence within the PQCD approach in that the value of the
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In other words, LxR contains an additional degree of freedom, gathered in the definition of
the coupling constant, to tune the scaling structure functions.
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In this procedure, however, an ambiguity is introduced, related to the need of continuing
the value of ↵
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for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
previous work [42], as a source of theoretical error or higher order e↵ects. We investigate
the e↵ect induced by changing the argument of ↵
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on the behavior of the ln(1� z)-terms in
the convolution Eq. (2), and resum those terms as
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including the complete z dependence of ↵
s,LO(W̃ 2) to all logarithms.1 Note that we are using

three di↵erent concepts of order expansions. The present analysis is conducted to next-to-
leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵

s,LO(scale) to all logarithms). This resummation is
easily understood when considering the first term of the expansion of ↵
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as proposed in Ref. [40]. To all logarithms, the convolution becomes

F

NS,Resum

2 (x,Q2) = xq(x,Q2) +
↵

s

4⇡

X

q

Z 1

x

dz B

Resum

NS (z)
x

z

q

⇣
x

z

,Q

2
⌘
, (8)

where,
B

Resum

NS = B

q

NS(z)� P̂

(0)
qq

(z) ln(1� z) + P̂

(0)
qq

(z) lnLxR . (9)

Using F

NS,Resum

2 plus TMCs, in Eq. (1), will make the ratio R decreases substantially,
essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f
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2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
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e↵ects have to be accounted for, and to cut ↵
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2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,
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1 The terms proportional to ln z are not divergent at z ! 1.
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be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.
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1 The terms proportional to ln z are not divergent at z ! 1.
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In this procedure, however, an ambiguity is introduced, related to the need of continuing
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for low values of its argument, i.e., for z ! 1 [41]. Since the size of this
ambiguity is of the same order as the higher-twist corrections, it has been considered, in a
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leading order (we evolve the PDF sets to NLO), to leading-twist (we consider the LT PDFs
only) and to all logarithms (we include ↵
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easily understood when considering the first term of the expansion of ↵
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essentially leaving no space for HT terms. This is due in our approach mostly to the change
of the argument of the running coupling constant. At fixed Q

2, in the integration over
x < z < 1, the scale f
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2(1 � z)/z is shifted and can reach low values, where the
running of the coupling constant starts blowing up. At this stage, our analysis requires
nonperturbative information. A way to address this issue is to set a maximum value for
the longitudinal momentum fraction, zmax, which defines a limit from which nonperturbative
e↵ects have to be accounted for, and to cut ↵
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at the corresponding scale, f
W

2(zmax) =
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2(1� zmax)/zmax. Larger values of zmax correspond to lower values at which the scale should
be cut in the analysis, meaning that the perturbative value can be used. As we show later,
large zmax occurs in the data at large Q2, therefore the e↵ect of the shift in scale gets smaller.

The functional form lnLxR is therefore slightly changed. Two distinct regions can be
studied: the “running” behavior in x < z < zmax and the “steady” behavior zmax < z < 1,
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constrained in the region of interest (x ! 0.3) despite it does not correspond di-
rectly to measured data. FDIS

2 is an input that once fed into the evolution equations
determines the structure functions behavior at much larger Q2. However, the error
on this type of backward evolution is expected here to be small, being dominated
by the valence contribution (a quantitative analysis of the latter will be carried out
in an upcoming study [17]). Had we applied the same procedure to low x where the
singlet and gluon distributions govern F2, we would have gotten a much larger error
at low Q2 because of the strong correlation with the value of αs.

Besides perturbative evolution one has to take into account several hadronic
corrections to FDIS

2 . For instance, if we evolve the structure functions to NLO, we
find that duality is violated by a given amount. However Target Mass Corrections
(TMCs) are important here and move the ratio closer to unity. The most important
effect for our purposes is the effect of LxR, that we develop hereafter.

2.1. Large-x Resummation

Large x threshold resummation effects (LxR) arise formally from terms containing
powers of ln(1−z), z being the longitudinal variable in the evolution equations, that
are present in the Wilson coefficient functions C(z). Below we write schematically
how the latter relate the parton distributions to e.g. the structure function F2,

FLT
2 (x,Q2) =

αs

2π

∑

q

∫ 1

x

dz C(z) q(x/z,Q2), (2)

where we have considered only the non-singlet (NS) contribution to F2 since only
valence quarks distributions are relevant in our kinematics. The logarithmic terms
in C(z) become very large at large x, and they need to be resummed to all orders
in αs. Resummation was first introduced by linking this issue to the definition of
the correct kinematical variable that determines the phase space for the radiation
of gluons at large x. This was found to be W̃ 2 = Q2(1−z)/z, instead of Q2 [15, 20].
As a result, the argument of the strong coupling constant becomes z-dependent:
αs(Q2) → αs(Q2(1 − z)/z) [21, 22]. In this procedure, however, an ambiguity is
introduced, related to the need of continuing the value of αs for low values of its
argument, i.e. for z → 1 [23].

Since the size of this ambiguity is of the same order as the higher-twist correc-
tions, it has been considered, in previous work [24], as a source of theoretical error
or higher order effects. We propose an accurate analysis [17] from which one can
extract αs for values of the scale in the infrared region. To do so, we investigate the
effect of varying the form of the running coupling on the evolution equations. We
consider the following choices:

• αs(Q2) ;
• an expansion of αs(W̃ 2) in ln((1− z)/z), to NLO,

αs(W̃
2) = αs(Q

2)−
β0

4π
ln

(
1− z

z

)
α2
s(Q

2), (3)
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Fig. 1. Running of the strong coupling constant in the MS with ΛLO = 174MeV. The solid black
curve represent the LO αs(Q2)/4π. The dashed red curve represents the expansion of the strong
coupling in ln((1 − z)/z), for z = 0.7 ; the dotted blue curve is the complete αs(Q2(1− z)/z)/4π
for the same value of z.

• the complete z dependence of αs(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very different when z → 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of αs(W̃ 2) differs from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value differs for αs(W̃ 2) and expansion w.r.t.
αs(Q2), as shown in the inner frame.

The meaning of LxR becomes very clear from Fig.1. It is now understood that
the only free parameter in testing the realization of duality here, is related to αs.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
αs(W̃ 2), as illustrated in Fig. 2.

This exercice has to be repeated for each experimental data point. We observe
from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s effective charge resulting from a massive
gluon propagator [2]. In effect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of αs(Q2) comes, here, in the form

[Courtoy & Liuti, 1208.5636]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

z

Α
s!20.

G
eV

2 ,z
"#4Π

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z

Α
s!2.G

eV
2 ,z
"#4Π

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

z

Α
s!0.40

2
G
eV

2 ,z
"#4Π

cut



Large-x Resummation: αs as  free parameter 

August 29, 2012 0:19 WSPC/INSTRUCTION FILE evo12˙courtoy˙liuti

4 Courtoy, Liuti

constrained in the region of interest (x ! 0.3) despite it does not correspond di-
rectly to measured data. FDIS

2 is an input that once fed into the evolution equations
determines the structure functions behavior at much larger Q2. However, the error
on this type of backward evolution is expected here to be small, being dominated
by the valence contribution (a quantitative analysis of the latter will be carried out
in an upcoming study [17]). Had we applied the same procedure to low x where the
singlet and gluon distributions govern F2, we would have gotten a much larger error
at low Q2 because of the strong correlation with the value of αs.

Besides perturbative evolution one has to take into account several hadronic
corrections to FDIS

2 . For instance, if we evolve the structure functions to NLO, we
find that duality is violated by a given amount. However Target Mass Corrections
(TMCs) are important here and move the ratio closer to unity. The most important
effect for our purposes is the effect of LxR, that we develop hereafter.

2.1. Large-x Resummation

Large x threshold resummation effects (LxR) arise formally from terms containing
powers of ln(1−z), z being the longitudinal variable in the evolution equations, that
are present in the Wilson coefficient functions C(z). Below we write schematically
how the latter relate the parton distributions to e.g. the structure function F2,

FLT
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dz C(z) q(x/z,Q2), (2)

where we have considered only the non-singlet (NS) contribution to F2 since only
valence quarks distributions are relevant in our kinematics. The logarithmic terms
in C(z) become very large at large x, and they need to be resummed to all orders
in αs. Resummation was first introduced by linking this issue to the definition of
the correct kinematical variable that determines the phase space for the radiation
of gluons at large x. This was found to be W̃ 2 = Q2(1−z)/z, instead of Q2 [15, 20].
As a result, the argument of the strong coupling constant becomes z-dependent:
αs(Q2) → αs(Q2(1 − z)/z) [21, 22]. In this procedure, however, an ambiguity is
introduced, related to the need of continuing the value of αs for low values of its
argument, i.e. for z → 1 [23].

Since the size of this ambiguity is of the same order as the higher-twist correc-
tions, it has been considered, in previous work [24], as a source of theoretical error
or higher order effects. We propose an accurate analysis [17] from which one can
extract αs for values of the scale in the infrared region. To do so, we investigate the
effect of varying the form of the running coupling on the evolution equations. We
consider the following choices:

• αs(Q2) ;
• an expansion of αs(W̃ 2) in ln((1− z)/z), to NLO,
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Fig. 1. Running of the strong coupling constant in the MS with ΛLO = 174MeV. The solid black
curve represent the LO αs(Q2)/4π. The dashed red curve represents the expansion of the strong
coupling in ln((1 − z)/z), for z = 0.7 ; the dotted blue curve is the complete αs(Q2(1− z)/z)/4π
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• the complete z dependence of αs(W̃ 2).

The running of each of the three versions of the coupling constant starts being
very different when z → 1. We illustrate this behavior on Fig. 1 for z = 0.7. The
infrared behavior of the coupling constant with argument Q2 starts to matter to
lower Q2 values than for a coupling constant which argument is W̃ 2. On the other
hand, the corresponding Landau poles do not coincide: for smallQ2 values and large-
z, the argument of αs(W̃ 2) differs from the logarithmic terms taken into account in
the NLO expansion. The asymptotic value differs for αs(W̃ 2) and expansion w.r.t.
αs(Q2), as shown in the inner frame.

The meaning of LxR becomes very clear from Fig.1. It is now understood that
the only free parameter in testing the realization of duality here, is related to αs.
By playing with the argument of the running coupling constant, we can tune the
scaling structure function and extract the low Q2 behavior that determines duality.
For instance, by setting a maximum value for z one would prevent the DGLAP
evolution from including extremely large values of the coupling constant. Moreover,
this zmax could define a criterion of convergence of the expansion w.r.t the complete
αs(W̃ 2), as illustrated in Fig. 2.

This exercice has to be repeated for each experimental data point. We observe
from our analysis that the maximum value of z or, equivalently, the scale in which
the running of the coupling is stopped changes from one to another data point.
A rough qualitative parameterization of the realization fo duality would look like
Fig. 3, where we have use the Cornwall’s effective charge resulting from a massive
gluon propagator [2]. In effect, the dynamical gluon mass generation leads to the
freezing of the QCD running coupling constant. The nonperturbative generalization
of αs(Q2) comes, here, in the form
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What does a cut in αs means?  
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zmax appears therefore as a free parameter in our analysis. A possible criterion to constrain
it is to fit the large x data assuming a null direct contribution to the structure function from
the dynamical HTs namely, for each Q

2 bin we define zmax by varying R

exp/th as a function
of zmax, so that

R

exp/th(zmax, Q
2) =

Z
xmax

xmin

dxF

exp

2 (x,Q2)
Z

xmax

xmin

dxF

NS,Resum

2 (x, zmax, Q
2)

=
I

exp

I

Resum
= 1 . (11)

In Eq. (11), FNS,Resum

2 (x, zmax, Q
2) was evaluated including TMCs, resummation to all log,

and setting possible dynamical HT contributions to zero. The latter get, however, absorbed
in the coupling’s infrared behavior. More precisely, the suppression of HTs in the structure
function is compensated by the behavior of ↵

s

in the infrared region. As a result, contrarily
to what originally deduced in, e.g., Ref. [43], a definite role of nonperturbative corrections
is obtained, pointing at the fact that duality, defined on the basis of a dominance of single
parton scattering, i.e., suppression of final state interactions, might indeed be broken.

Results are represented by the red hexagons in Fig. 2. The integrals values are given in
Tab. II together with the corresponding values for zmax. Since, for the largest values of Q2,
Q

2 = 10, 15GeV2, outside the resonance region, on Fig. 1, zmax becomes closer to 1, we do
not consider those data points in what follows.
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FIG. 2: The ratio R

exp/th(xave, Q
2) as a function of Q2, on the left pannel, and as a function of xave

on the right. Same as Fig. 1 but with the red hexagon representing the LxR results of Tab. II.
The key shows the results corresponding to JLab data. The open triangle, full diamonds and open
hexagons corresponds to SLAC data.

3. Based on the results of our analysis of large x data including TMCs and LxR, we now
extract ↵

s

by assuming that it runs from the onset of a minimal scale which is determined
from the comparison with data, and it is frozen from that minimal scale downward to the
real photon limit (scale=0 GeV2). As one can see from Table II, data in the resonance region
are crucial for this determination.

In Fig. 3 we show our extracted value ↵
s,NLO(scale) where we used the MS scheme outside

the IR region, for the same value of ⇤ throughout this paper. ↵
s

was obtained as an exact
solution to NLO [21]. Our theoretical error band is defined by the shift in zmax from the
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2.5 4.881⇥ 10�2 2.765⇥ 10�2 3.393⇥ 10�2 4.872⇥ 10�2 0.745

3.75 2.356⇥ 10�2 1.201⇥ 10�2 1.756⇥ 10�2 2.359⇥ 10�2 0.76

5. 1.267⇥ 10�2 0.553⇥ 10�2 0.942⇥ 10�2 1.270⇥ 10�2 0.79
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4. 2.045⇥ 10�2 1.017⇥ 10�2 1.487⇥ 10�2 2.041⇥ 10�2 0.79
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6. 0.802⇥ 10�2 0.317⇥ 10�2 0.581⇥ 10�2 0.803⇥ 10�2 0.825

7. 0.531⇥ 10�2 0.191⇥ 10�2 0.383⇥ 10�2 0.532⇥ 10�2 0.837

8. 0.363⇥ 10�2 0.122⇥ 10�2 0.262⇥ 10�2 0.363⇥ 10�2 0.845

TABLE II: Integrals at each stage. In the last columns: the value z

max

associated with
I

Resum(zmax, Q
2).

di↵erent bins displayed in Table II namely,

↵

s,NLO

✓
Q

2
i

(1� zmax,i)

zmax,i

◆
for i = 1, . . . 10 , (12)

i corresponds to the data points. Including this error band, our extracted frozen value of
the coupling constant is, using the MSTW08 PDF set for the analysis,

0.1337  ↵

s,NLO(scale ! 0GeV2)

⇡

 0.1839 . (13)

In the figure we also report values from the extraction using polarized eP scattering data
in Ref. [44–47]. These values represent the first extraction of an e↵ective coupling in the
IR region that was obtained by analyzing the data relevant for the study of the GDH sum
rule. To extract the coupling constant, the MS expression of the Bjorken sum rule up to the
5th order in alpha (calculated in the MS scheme) was used. In order to compare with our
extraction using the F p

2 observable, the finite value for ↵
s

(0) found in [45–47] was rescaled in
[44] assuming the validity of the commensurate scale relations [47] in the entire range of the
scale entering the analysis. The agreement with our analysis which is totally independent,
is impressive.

4. In conclusion, we presented an extraction of ↵
s

using eP scattering data at large x. A
careful analysis of all the contributions appearing at large x including TMCs and LxR, was
performed. The central value for ↵

s

(Q2
< 1GeV2)/⇡ was found to be 0.1588. This value is

in agreement with the extraction from the GDH sum rule analysis [44–46].
When considering PQCD observables at low scales, we implicitly face an interpretation

problem. In the multi-GeV2 region and at large-x, where the resonances lie, perturbative
QCD is pushed to its limits. Both higher terms in the perturbative expansion of that
observable, and power corrections need be taken into account. In the present approach, this
transition is taken into account by re-interpreting the running coupling constant, at the scale
of transition instead. By tuning the scaling structure functions to the averaged data in the
resonance region, we parametrize the realization of duality through an infrared fixed-point
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Q

2 [GeV2] xave I

exp(Q2)

1.75 0.516 6.994⇥10�2

2.5 0.603 4.881⇥10�2

3.75 0.702 2.356⇥10�2

5. 0.753 1.267⇥10�2

6.5 0.800 0.685⇥10�2

4. 0.712 2.045⇥10�2

5. 0.755 1.255⇥10�2

6. 0.787 0.802⇥10�2

7. 0.812 0.531⇥10�2

8. 0.832 0.363⇥10�2

TABLE I: Upper block: Integrals of JLab data from Refs. [23, 24], appearing in the numerator of
Eq. (1). The first column shows the average values of x for each bin. Lower block: SLAC data [25].
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FIG. 1: Ratio R

exp/th(Q2) of Eq. (1) where the theoretical analysis includes PQCD evolution using
the MSTW08 PDF set (black triangle), and MSTW08 PDF set plus TMCs (open green diamonds).
Ratios with error bars on data integrated in quadrature ; right panel: ratios with weighted error
bars on data integrated in quadrature.

quarks reads,

B

q

NS(z) =


P̂

(0)
qq

(z)

⇢
ln

✓
1� z

z

◆
� 3

2

�
+ E.P.

�

+

, (4)

where E.P. means end points and [. . .]+ denotes the standard plus-prescription. The function

P̂

(0)
qq

(z) is the LO splitting function for quark-quark. The logarithmic terms, i.e., ln(1� z),
in B

q

NS(z) become very large at large x values. They need to be resummed to all orders in
↵

s

. Resummation was first introduced by linking this issue to the definition of the correct
kinematical variable that determines the phase space for the radiation of gluons at large x.
This was found to be f

W

2 = Q

2(1� z)/z, instead of Q2 [11, 39]. As a result, the argument
of the strong coupling constant becomes z-dependent [40],

↵

s

(Q2) ! ↵

s

✓
Q

2 (1� z)

z

◆
. (5)
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αs at low energy from duality
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Effective charges & schemes

[Brodsky et al., Phys.Rev.D81]

?

Can we still understand the relation between 
schemes (and their physical content)

in the NP regime ?
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Effective charges & schemes

How to relate the effective couplings?

Commensurate Scale Relations?                                                                            [Brodsky & Lu, Phys. Rev. D251]

 RG-improved perturbation theory?                                                    [Grunberg, Phys. Rev. D29]

[Brodsky et al., Phys.Rev.D81]

?

Can we still understand the relation between 
schemes (and their physical content)

in the NP regime ?
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Quark-gluon interaction is expected to dominate at x→1 
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→ compatibility with confinement?

Here: all the nonperturbative effects into αs

→ smooth transition from perturbative to nonperturbative physics

Note:  Ambiguities at the pQCD analysis level
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Possibly ‘double’ counting due to uncertainty on PDFs at large-x
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usually thru a Higher-twist term O(1/Q2) 

correction of the same O as cut in αs

                   ➨ Only solution: properly fit large-x PDFs !
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The second step involves, in particular, a methodology in order to extract PDFs and their

uncertainties from this comparison, and also, a choice of measurable processes in order to

maximize the information on the various PDFs.

2.1 Theoretical Framework

The basic property which enables the perturbative computation of cross sections for pro-

cesses with hadrons in the initial state is their factorization into a partonic cross section

— computed in perturbation theory, using the quark and gluon degrees of freedom of the

QCD Lagrangian, and independent of the incoming hadron — and parton distributions,

which characterize the hadronic bound states, and are universal, i.e., do not depend on

the specific process. Thanks to universality, it is possible to determine PDFs using the

experimental information on a particular set of processes, and then use them to obtain

predictions for different processes. Here we will review some basic results, while referring

to Reference [52] for a textbook treatment, and to Reference [53] for detailed proofs of the

underlying factorization theorems.

2.1.1 Factorization for Hadroproduction

The cross section for a generic hadroproduction process which depends on a single scale

M2
X can be written in factorized form as

σX(s,M2
X) =

∑

a,b

∫ 1

xmin

dx1 dx2 fa/h1
(x1,M

2
X) fb/h2

(x2,M
2
X) σ̂ab→X

(

x1x2s,M
2
X

)

(2.1)

=
∑
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σ0ab

∫ 1

τ

dx1
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dx2
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2
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2
X)Cab

(

τ
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,αS(M
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τ

dx

x
Lab
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x,M2
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)
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(τ

x
,αS(M

2
X)
)

, (2.2)

where s is the center-of-mass energy of the hadronic collision, fa/hi
(xi,M2

X) is the distri-

bution of partons of type a in the ith incoming hadron, σ̂ab→X is the parton-level cross

section for the production of the desired final state X, the minimum value of xi is xmin = τ ,

τ ≡
M2

X

s
(2.3)

is the scaling variable of the hadronic process, and in the last step leading to Equation 2.2

we defined the parton luminosity

Lab(x,M
2
X) ≡

∫ 1

x

dz

z
fa/h1

(

z,M2
X

)

fb/h2

(x

z
,M2

X
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∫ 1

x

dz

z
fa/h1

(x

z
,M2
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fb/h2

(

z,M2
X

)

.

(2.4)

Equation 2.1 also holds for factorizable multi-scale processes (such as, say, Higgs production

in W fusion), with σ evaluated as a function of the incoming hadron momenta p1 and p2,

and σ̂ evaluated as a function of the incoming parton momenta x1p1 and x2p2.
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III. W AND Z BOSON PRODUCTION

In this section we discuss the effects of PDF uncertainties at large x on the W and

Z boson cross sections, and possible constraints on these obtained from measurements at

large rapidities. Earlier studies probing the sensitivity of weak boson production to PDF

uncertainties were explored in Refs. [25–33]. The discussion here is not meant to provide

an exhaustive account of detailed aspects of W boson production, but simply highlight the

fact that nuclear corrections in deuterium are an important source of PDF uncertainty at

large x that has not been addressed in earlier analyses. To begin with we shall review the

general formulas for the inclusive weak boson production cross sections in hadronic collisions

relevant to current collider experiments.

A. Cross sections

Hadron–hadron collisions involve at least two interacting partons, one from the hadron

“beam” and one from the “target”, with momentum fractions x1 and x2, respectively. At

fixed center of mass energy
√
s and boson rapidity

y =
1

2
ln

(

E + pz
E − pz

)

, (1)

where E and pz are the boson energy and longitudinal momentum in the hadron center

of mass frame, the parton momentum fractions are given (at leading order in the strong

coupling constant) by

x1,2 =
M√
s
e±y, (2)

where M is the mass of the produced boson. The absolute value of the rapidity thus ranges

from 0 up to |y|max = log(
√
s/M). For inclusive W+ production in pp or pp̄ collisions, for

example, the cross sections (to leading order and neglecting heavy quarks) are given by [34]

dσ

dy

(

pp → W+X
)

=
2πGF

3
√
2
x1x2

(

cos2 θC
[

u(x1)d(x2) + d(x1)u(x2)
]

+ sin2 θC [u(x1)s(x2) + s(x1)u(x2)]
)

, (3a)
dσ

dy

(

pp → W+X
)

=
2πGF

3
√
2
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(

cos2 θC
[

u(x1)d(x2) + d(x1)u(x2)
]

+ sin2 θC [u(x1)s(x2) + s(x1)u(x2)]
)

, (3b)

5

MZ

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

yZ

x

 √s=7 TeV 
 √s=1.96 TeV 



Large-x matters
hadron-hadron collisions

2 partons with scaling variables: x1 and x2 

fixed √s 

boson rapidity y, mass M

Brady et al, JHEP (2012) 1206

h2

h1 a

b
a+b→X

The second step involves, in particular, a methodology in order to extract PDFs and their

uncertainties from this comparison, and also, a choice of measurable processes in order to

maximize the information on the various PDFs.

2.1 Theoretical Framework

The basic property which enables the perturbative computation of cross sections for pro-

cesses with hadrons in the initial state is their factorization into a partonic cross section

— computed in perturbation theory, using the quark and gluon degrees of freedom of the

QCD Lagrangian, and independent of the incoming hadron — and parton distributions,

which characterize the hadronic bound states, and are universal, i.e., do not depend on

the specific process. Thanks to universality, it is possible to determine PDFs using the

experimental information on a particular set of processes, and then use them to obtain

predictions for different processes. Here we will review some basic results, while referring

to Reference [52] for a textbook treatment, and to Reference [53] for detailed proofs of the

underlying factorization theorems.

2.1.1 Factorization for Hadroproduction

The cross section for a generic hadroproduction process which depends on a single scale

M2
X can be written in factorized form as

σX(s,M2
X) =

∑

a,b

∫ 1

xmin

dx1 dx2 fa/h1
(x1,M

2
X) fb/h2

(x2,M
2
X) σ̂ab→X

(

x1x2s,M
2
X

)

(2.1)

=
∑

a,b

σ0ab

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

fa/h1
(x1,M

2
X) fb/h2

(x2,M
2
X)Cab

(

τ

x1x2
,αS(M

2
X)

)

=
∑

a,b

σ0ab

∫ 1

τ

dx

x
Lab

(

x,M2
X

)

Cab

(τ

x
,αS(M

2
X)
)

, (2.2)

where s is the center-of-mass energy of the hadronic collision, fa/hi
(xi,M2

X) is the distri-

bution of partons of type a in the ith incoming hadron, σ̂ab→X is the parton-level cross

section for the production of the desired final state X, the minimum value of xi is xmin = τ ,

τ ≡
M2

X

s
(2.3)

is the scaling variable of the hadronic process, and in the last step leading to Equation 2.2

we defined the parton luminosity

Lab(x,M
2
X) ≡

∫ 1

x

dz

z
fa/h1

(

z,M2
X

)

fb/h2

(x

z
,M2

X

)

=

∫ 1

x

dz

z
fa/h1

(x

z
,M2

X

)

fb/h2

(

z,M2
X

)

.

(2.4)

Equation 2.1 also holds for factorizable multi-scale processes (such as, say, Higgs production

in W fusion), with σ evaluated as a function of the incoming hadron momenta p1 and p2,

and σ̂ evaluated as a function of the incoming parton momenta x1p1 and x2p2.

– 5 –

III. W AND Z BOSON PRODUCTION

In this section we discuss the effects of PDF uncertainties at large x on the W and

Z boson cross sections, and possible constraints on these obtained from measurements at

large rapidities. Earlier studies probing the sensitivity of weak boson production to PDF

uncertainties were explored in Refs. [25–33]. The discussion here is not meant to provide

an exhaustive account of detailed aspects of W boson production, but simply highlight the

fact that nuclear corrections in deuterium are an important source of PDF uncertainty at

large x that has not been addressed in earlier analyses. To begin with we shall review the

general formulas for the inclusive weak boson production cross sections in hadronic collisions

relevant to current collider experiments.

A. Cross sections

Hadron–hadron collisions involve at least two interacting partons, one from the hadron

“beam” and one from the “target”, with momentum fractions x1 and x2, respectively. At

fixed center of mass energy
√
s and boson rapidity

y =
1

2
ln

(

E + pz
E − pz

)

, (1)

where E and pz are the boson energy and longitudinal momentum in the hadron center

of mass frame, the parton momentum fractions are given (at leading order in the strong

coupling constant) by

x1,2 =
M√
s
e±y, (2)

where M is the mass of the produced boson. The absolute value of the rapidity thus ranges

from 0 up to |y|max = log(
√
s/M). For inclusive W+ production in pp or pp̄ collisions, for

example, the cross sections (to leading order and neglecting heavy quarks) are given by [34]

dσ

dy

(

pp → W+X
)

=
2πGF

3
√
2
x1x2

(

cos2 θC
[

u(x1)d(x2) + d(x1)u(x2)
]

+ sin2 θC [u(x1)s(x2) + s(x1)u(x2)]
)

, (3a)
dσ

dy

(

pp → W+X
)

=
2πGF

3
√
2
x1x2

(

cos2 θC
[

u(x1)d(x2) + d(x1)u(x2)
]

+ sin2 θC [u(x1)s(x2) + s(x1)u(x2)]
)

, (3b)

5

MZ

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

yZ

x

 √s=7 TeV 
 √s=1.96 TeV 

to study their sensitivity to PDF uncertainties at large x. All calculations will be for

pp collisions at the LHC with
√
s = 7 TeV, and for pp collisions at the Tevatron with

√
s = 1.96 TeV.

B. Z bosons

The sensitivity of the differential Z boson cross section to the different PDF behaviors

at large x is illustrated in Fig. 2 as a function of the Z boson rapidity yZ , for LHC and

Tevatron kinematics. The cross sections are computed from the CJ PDFs [5] with minimal

and maximal nuclear corrections, relative to a reference cross section computed from the

central PDFs as described in Sec. II.
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FIG. 2: Differential Z boson cross section as a function of the Z rapidity yZ , computed from CJ

PDFs with maximum (blue dashed) and minimum (red dot-dashed) nuclear corrections, relative to

the reference cross section σZ(ref) calculated using the central CJ PDF set [5]. The cross sections

are computed for pp collisions at the LHC with
√
s = 7 TeV (left) and for pp collisions at the

Tevatron with
√
s = 1.96 TeV (right).

The behavior of the cross section ratios is qualitatively similar at both the LHC and

the Tevatron, with the main difference being the range of rapidities accessible from the

respective available energies
√
s. At low rapidities the cross sections are relatively insensitive

to uncertainties in the large-x PDFs, with differences of <∼ 1% for yZ <∼ 3 at the LHC and

yZ <∼ 2 at the Tevatron. At larger rapidities, however, there is far greater sensitivity to the

large-x behavior, particularly of the d quark, leading to ≈ 15% uncertainty in the differential

cross section for yZ = 4 at the LHC, and for yZ = 2.8 at the Tevatron, which correspond to

7
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Because the W ′ cross sections in pp collisions at the Tevatron are determined by the

products u(x1)d(x2) and d(x1)u(x2) for W ′+ and W ′−, respectively, integrating over rapidity

samples all accessible values of x1 and x2, so that the total W ′+ and W ′− cross sections are

equivalent. The dependence of the integrated W ′ cross sections on PDFs essentially follows

the d quark distribution. For masses MW ′
<∼ 0.5 TeV there is little sensitivity to the large-

x behavior of the PDFs, with <∼ 5% uncertainty in the cross section ratio, but increasing

dependence at larger MW ′, with ≈ 30% uncertainty at MW ′ = 1 TeV.

While the sensitivity of the W ′ and Z ′ cross sections to the large-x behavior of PDFs

increases with increasingW ′ and Z ′ masses, the absolute values of the cross sections naturally

fall with increasing masses, some 3 orders of magnitude from 100 GeV to 3 TeV. This is

illustrated in Fig. 9, where the ratio of the integrated W ′+ +W ′− cross sections computed

from CJ PDFs with minimum and maximum nuclear corrections, relative to the cross section

with the central CJ PDFs, is plotted versus the integrated Z ′ cross section. Here the ratio

of the W ′ to Z ′ masses is kept constant in order to study the effect of the increasing W ′, Z ′

mass. For larger boson masses the impact of the large-x PDF uncertainties clearly increases,

reflecting the trend observed in Figs. 7 and 8. Note that because the integrated W ′+ cross

section is generally larger than the W ′− cross section (because of the larger u distribution

compared with the d), the σW ′/σW ′(ref) ratio in Fig. 9 generally follows the ratio of the W ′+
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FIG. 7: Integrated Z ′ boson cross section from Fig. 6 as a function of the Z ′ mass, computed

from CJ PDFs with minimum (red dot-dashed) and maximum (blue dashed) nuclear corrections,

relative to the reference cross section σZ′(ref) calculated using the central CJ PDF set [5], for LHC

(left) and Tevatron (right) kinematics.
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Conclusions

‣ Analyzis of the Bloom-Gilman quark-hadron duality in perturbative QCD

‣ Its realization is parametrized by the freezing of the running coupling constant

‣ Our approach:

➡ All the NP effects are embedded in the effective charge at the 
hadronic scale 

‣ The hadronic scale turns out to be Q02=1GeV2 

‣ αs (Q2<1GeV2)/π=0.16

‣ Doesn’t disagree with NP approaches. 

‣ Comparison of perturbative & NP schemes has to be understood! 
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