Quark-hadron duality and large-x PDFs

Aurore Courtoy

Université de Liège, Belgium & INFN-LNF, Italy

Spring Institute, LNF

March 14th, 2014

Outline

Quark-Hadron Duality

- Intersection of pQCD and nonperturbative QCD
- Strong coupling constant at low energy

Hadronic scale

- Initial conditions from nonperturbative QCD
- Large-x PDFs matter!

Based on collaboration with S. Liuti

Phys.Lett. B726 (2013)

and work(s) in progress

Quantum ChromoDynamics

Running of α_s

Quantum ChromoDynamics

Hadron ⇔ ``Constituent'' quarks ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Evolution in Q²

Deeper in the structure

Hard probes

 $d\sigma$ $\frac{1}{d\nu dQ^2} \propto l_{\mu\nu} W^{\mu\nu}$

Parton Model

Kinematics of the Bjorken scaling $Q^2 \rightarrow \infty$ $p.q \rightarrow \infty$ $Q^2/2p.q = x = finite$

Parton Distribution Functions

Factorization

In the Bjorken limit, hadronic tensor dominated by the light-cone $z^2 \sim 0$ \rightarrow can be "ordered" by OPE

 $\frac{d\sigma}{d\nu dQ^2} \propto l_{\mu\nu} W^{\mu\nu} \propto F_2(x)$

Leading order structure

Selection of the QCD operator

PDFs are universal

Leading order structure

Selection of the QCD operator

Scaling violations

Image credit: DESY Hamburg

Structure Functions and DIS

Parton Model Bjorken scaling

$$F_2(x,Q^2) = \sum_{q\bar{q}} \int_0^1 d\xi f_1(x,Q^2) x e_q^2 \,\delta(x-\xi)$$

$$F_2(x) \equiv F_2(x,Q^2)$$

Scaling violations lead to

Q²-dependence of the Structure Functions

DGLAP equations [Dokshitzer-Gribov-Lipatov Altarelli-Parisi]

Jargon: "Q² or QCD evolution"

Perturbative QCD

Choice of factorization scheme !

PDFs are non-perturbative objects

- related to confinement and chiral symmetry
- transition of degrees of freedom
- related to angular momentum (of quarks and gluons)

- little first principles based constraints
 - **QCD** sum rules, symmetries, ...
- evaluated in models for hadron structure
- fitted from data (Q² behavior = pQCD)

Resolution matters —> **NonPerturbative scales**

Parton Distributions from Experiments

♀ Where?

- Solution ⇒ DIS: eP→eX
- Drell-Yan: $PP \rightarrow I^+I^-X$
- 🗳 jets ...

♀ How?

- **fit from scale Q**₀²
- 🗳 functional form

$$f_i(x, Q_0^2) = x^{\alpha_i} (1 - x)^{\beta_i} g_i(x)$$

treatment of error

$$\Delta\chi^2 = T^2$$

S.Forte & G.Watt Ann.Rev.Nucl.Part.Sci. 63 (2013)

- Who?
- * ABM
- * HERAfitter
- * CTEQ
- * MSTW
- * NNPDF
- * SOMPDF

Uncertainties for PDF from Low Energy

- Standard approach for fitting PDF: arbitrary Q₀²>1GeV²
- **Value of** $\alpha_s(M_Z^2)$ differs for each set

Improvements?

- **Dynamical GJR parameterization:** Q_0^2 as a guideline !
 - ➡ Valence vs. radiative behaviour
 - → Q_0^2 turns out to be of the order of 0.5GeV² (with $\Lambda_{NL0}^{n_f=3} \sim 303$ MeV)
- Non-perturbative input needed!

Input vs. Hadronic scale

- input scale uncertainty studied in GJR/JR
- 🏺 procedural bias
- red band: experimental uncertainty
- uncertainty from scale
 - ~ order of magnitude as exp. unc.

P. Jimenez-Delgado Physics Letters B 714 (2012)

Hadronic Scale from models

• use RGE

Standard method:

- one first principle based assumption
- set partonic scenarios

Parisi & Petronzio, Phys. Lett. B 62 (1976) 331 Traini et al, Nucl. Phys. A 614, 472 (1997) Stratmann, Z.Phys. C60 (1993)

Say there exists a scale at which there is no sea and no gluon, then

$$\left\langle \left(u_v + d_v\right)\left(\mu_0^2\right)\right\rangle_{n=2} = 1$$

QCD evolution introduces gluons and sea quarks:

$$\langle q_v(Q^2) \rangle_n = \langle q_v(\mu_0^2) \rangle_n \left(\frac{\alpha(Q^2)}{\alpha(\mu_0^2)}\right)^{d_{NS}^n}$$

R.G.Roberts "The Structure of the Proton"

$$\langle (u_v + d_v) \left(Q^2 = 10 \,\mathrm{GeV}^2 \right) \rangle_{n=2} = 0.36$$

DATA= PDFs parameterization

Hadronic Scale from models

• use RGE

Standard method:

- one first principle based assumption
- set partonic scenarios

Parisi & Petronzio, Phys. Lett. B 62 (1976) 331 Traini et al, Nucl. Phys. A 614, 472 (1997) Stratmann, Z.Phys. C60 (1993)

Say there exists a scale at which there is no sea and no gluon, then

$$\left\langle \left(u_v + d_v\right)\left(\mu_0^2\right)\right\rangle_{n=2} = 1$$

QCD evolution introduces gluons and sea quarks:

$$\langle q_v(Q^2) \rangle_n = \langle q_v(\mu_0^2) \rangle_n \left(\frac{\alpha(Q^2)}{\alpha(\mu_0^2)}\right)^{d_{NS}^n}$$

R.G.Roberts "The Structure of the Proton"

$$\langle (u_v + d_v) \left(Q^2 = 10 \,\mathrm{GeV}^2 \right) \rangle_{n=2} = 0.36$$

DATA= PDFs parameterization

Evolve in energy until 2nd moment=1 Find $\mu_0^2 \sim 0.1 \text{GeV}^2 + \Delta \mu_0^2$

Hadronic scale

What does a low $\mu_0^2 \sim 0.2 \text{GeV}^2 + \Delta \mu_0^2$ means?

guess for MSTW08NLO

Approaching the Landau pole...

Effective charges

The non-perturbative approach:

- Importance of finite couplings
- Taming the Landau pole

The non-perturbative interpretation:

- Effective couplings from phenomenology
- Dimensional transmutation (RG-improved)
 - from RS dependence to Observable dependence (à la Grunberg)

Uncertainty on the hadronic scale

A.C., Vento & Scopetta, Eur.Phys.J.A47

We can find a scale for which the sum rule is OK

- Ş
- Ş

High gluon mass scenario NP coupling constant Ş

(m₀=500 MeV ; Λ=250 MeV ; ρ=2)

J. M. Cornwall, Phys. Rev. D26, 1453 (1982)

Strong correlation with dof

Need to better constrain Q_0^2 !

Uncertainty on the hadronic scale

A.C., Vento & Scopetta, Eur.Phys.J.A47

We can find a scale for which the sum rule is OK

- Ş
- Ş

High gluon mass scenario NP coupling constant Ş

(m₀=500 MeV ; Λ=250 MeV ; ρ=2)

J. M. Cornwall, Phys. Rev. D26, 1453 (1982)

Need to better constrain Q_0^2 !

Strong correlation with dof

Quark-hadron duality

[Poggio, Quinn & Weinberg, Phys Rev D13]

$$e^+ - e^- \rightarrow hadrons \equiv \sum_q (e^+e^- \rightarrow q\bar{q}) \Rightarrow \sigma_{hadrons} \equiv \sum_q \hat{\sigma}_q$$

averaged hadronic cross section ⇔ averaged quark cross section

 \Rightarrow Smearing techniques

Complementarity between Parton and Hadron descriptions of observable

Bllom-Gilman duality

Structure functions Resonance region ⇔ Scaling region

- When $x \rightarrow 1$, \rightarrow elastic scattering
- Exclusive scattering
- Intertwine with resonance region

 $x_{Bj} {>} 0.5, \, Q^2 \text{ multi-GeV region} \Rightarrow 1.2 {<} W^2 {\leq} 4 GeV^2$

[Bloom & Gilman, Phys.Rev.Lett.25]

Bloom-Gilman Duality Resonances created in electroproduction are a substantial part of the observed scaling behaviour of inelastic electron-proton scattering

Duality and QCD

Finite Energy Sum Rule "

$$\int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{resonances}}(x, Q^2) = \int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{scaling}}(x, Q^2)$$

Global duality:

at fixed Q² $\mathbf{x_M}: \mathbf{x_m} \Leftrightarrow \mathbf{W_m^2}: \mathbf{W_M^2} \Rightarrow \mathbf{1.2}: 4\,\mathrm{GeV}^\mathbf{2}$

$$W^2 = Q^2 \left(\frac{1}{x} - 1\right) + M^2$$

For review see [Melnitchouk et al, Phys.Rep 406]

Duality and QCD

Finite Energy Sum Rule "

$$\int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{resonances}}(x, Q^2) = \int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{scaling}}(x, Q^2)$$
experiment
theory
$$for theory$$

$$for theory$$

$$for theory$$

$$group = x_{M} : x_{m} \Leftrightarrow W_{m}^2 : W_{M}^2 \Rightarrow 1.2 : 4 \text{ GeV}^2$$

$$W^2 = Q^2 \left(\frac{1}{x} - 1\right) + M^2$$

Duality and QCD

Finite Energy Sum Rule "

$$\int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{resonances}}(x, Q^2) = \int_{x_{\min}}^{x_{\max}} dx \, F_2^{\text{scaling}}(x, Q^2)$$
experiment
theory
$$for theory$$

$$for theory$$

$$for theory$$

$$global duality:$$

$$at fixed Q^2$$

$$x_M : x_m \Leftrightarrow W_m^2 : W_M^2 \Rightarrow 1.2 : 4 \text{ GeV}^2$$

$$W^2 = Q^2 \left(\frac{1}{x} - 1\right) + M^2$$

Recipe for a perturbative analysis

- Target Mass Corrections (TMC)
- NLO in α_s in pQCD

For review see [Melnitchouk et al, Phys.Rep 406]

Violation of Bloom-Gilman Duality

- Iow-Q² SF have strong Q² dependence
 - violates scaling & duality
- $F(x,Q^2) = F^{(2)}(x,Q^2) + \frac{F^{(4)}(x,Q^2)}{Q^2} + \dots$
- duality implies leading-twist only !
- duality gives info on size of nonperturbative corrections

[Malace et al, PRC80]

Intersection of pQCD & non-perturbative QCD

$$\int_{\text{Res.reg}} dx F_2^{\text{Res}}(x, Q^2) \Leftrightarrow \int_{\text{Res.reg}} dx F_2^{\text{scaling}}(x, Q^2)$$
experiment theory

Recipe for a perturbative analysis

- Target Mass Corrections (TMC)
- NLO in α_s in pQCD

Non perturbative info?

- Higher-Twists
- LxR in definition of α_s

Intersection of pQCD & non-perturbative QCD

$$\int_{\text{Res.reg}} dx F_2^{\text{Res}}(x, Q^2) \Leftrightarrow \int_{\text{Res.reg}} dx F_2^{\text{scaling}}(x, Q^2)$$
experiment
experiment
theory

Recipe for a perturbative analysis

F₂ in perturbative QCD

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \right]$$
$$\left\{ P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) + \dots \right\}$$

$$q(x,\mu^2) = q_0(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P\left(\frac{x}{\xi}\right) \ln \frac{\mu^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right\}$$

$$\overrightarrow{\text{MS scheme}} \rightarrow F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_S}{2\pi} C_{\overline{\text{MS}}}\left(\frac{x}{\xi}\right) + \dots \right\}$$

- 1. q₀→ leading-twist PDFs here MSTW08NLO
- 2. $q_0 \rightarrow$ evolved to $q(x, Q^2)$ via DGLAP with $P \rightarrow$ splitting functions, to NLO
- 3. $C \rightarrow \text{coefficient functions, to NLO}$

In practice:

- 1. DGLAP
- 2. convolution with coefficient functions

F₂ in perturbative QCD

$$F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \left[q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \right]$$
$$\left\{ P\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) + \dots \right\}$$

$$q(x,\mu^2) = q_0(x) + \frac{\alpha_S}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left\{ P\left(\frac{x}{\xi}\right) \ln \frac{\mu^2}{\kappa^2} + C\left(\frac{x}{\xi}\right) \right\}$$

$$\overline{\text{MS scheme}} \rightarrow F_2(x,Q^2) = x \sum_{q,\bar{q}} e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) \left\{ \delta(1-\frac{x}{\xi}) + \frac{\alpha_S}{2\pi} C_{\overline{\text{MS}}}\left(\frac{x}{\xi}\right) + \dots \right\}$$

- 1. q₀→ leading-twist PDFs here MSTW08NLO
- 2. $q_0 \rightarrow$ evolved to $q(x, Q^2)$ via DGLAP with P \rightarrow splitting functions, to NLO
- 3. $C \rightarrow \text{coefficient functions, to NLO}$

Is it still true at large-x?

In practice:

- 1. DGLAP
- 2. convolution with coefficient functions

Target Mass Corrections

- Effects associated with the mass of the target
- $\overset{\odot}{=}$ infinite vs. finite target mass \Rightarrow Bjorken vs. Nachtmann variable

$$x = \frac{Q^2}{2P.q} \Leftrightarrow \xi = \frac{2x}{1 + \sqrt{1 + 4x^2M^2/Q^2}}$$

$$F_{2}^{NS(TMC)}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}\gamma^{3}}F_{2}^{\infty}(\xi,Q^{2}) + 6\frac{x^{3}M^{2}}{Q^{2}\gamma^{4}}\int_{\xi}^{1}\frac{d\xi'}{\xi'^{2}}F_{2}^{\infty}(\xi',Q^{2})$$

$$Georgi \& Politzer (1976)$$

$$F(x,Q^{2},M^{2}) \propto \int_{\xi}^{\xi/x}\frac{dz}{z}H(\xi/z,Q^{2})q(z,Q^{2})$$

,, Accardi & Qiu (2008)

Х

Data analysis: F2 at JLab

$$R^{\text{exp/th}}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{exp}}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{th}}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Data analysis: F2 at JLab

$$R^{\text{exp/th}}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{exp}}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{th}}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Data analysis: F2 at JLab

$$R^{\exp/\text{th}}(Q^2) = \frac{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\exp}(x, Q^2)}{\int_{x_{\min}(W^2 = 4\text{GeV}^2)}^{x_{\max}(W^2 = 4\text{GeV}^2)} dx F_2^{\text{th}}(x, Q^2)}$$

Hall C E94-110 reanalyzed by Monaghan [1209.4542]

=1 if duality fulfilled

Still missing something...

Large-x resummation

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: Λ²«W²~Q²
- Argument for α_s is s, mass square of final state of γ^* parton collision

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

$$\hat{s} = Q^2 \frac{1-z}{z}$$
Without LxR, upper limit =Q²
DGLAP

$$q(x,Q^2) = \int_x^1 \frac{dz}{z} \int_{\mu^2}^{Q^2 \frac{1-z}{z}} dk_T^2 \alpha_s(k_T^2) P_{qq} \left(z, \alpha_s(k_T^2)\right) q\left(\frac{x}{z}, k_T^2\right)$$

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

$$\hat{s} = Q^2 \frac{1-z}{z}$$
Without LxR, upper limit =Q²

$$\int_{x}^{0} \frac{dz}{z} \int_{\mu^2}^{Q^2 \frac{1-z}{z}} dk_T^2 \alpha_s(k_T^2) P_{qq}\left(z, \alpha_s(k_T^2)\right) q\left(\frac{x}{z}, k_T^2\right)$$

The structure functions become

$$\mathbf{F_2^{NS}}(\mathbf{x}, \mathbf{Q^2}) = \frac{1}{4\pi} \sum_{\mathbf{q}} \, \int_{\mathbf{x}}^{1} d\mathbf{z} \, \alpha_{\mathbf{s}} \left(\frac{\mathbf{Q^2}(1-\mathbf{z})}{\mathbf{z}} \right) \, \mathbf{C_{NS}}(\mathbf{z}) \, \frac{\mathbf{x}}{\mathbf{z}} \mathbf{q_{NS}} \left(\frac{\mathbf{x}}{\mathbf{z}}, \mathbf{Q^2} \right)$$

- Large invariants: Λ²«W²~Q²
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

- Large invariants: Λ²«W²~Q²
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

- Large invariants: $\Lambda^2 \ll W^2 \sim Q^2$
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

Amati et al., Nucl.Phys. B173 (1980) 429

- Large invariants: Λ²«W²~Q²
- Argument for α_s is ω^2 , mass square of final state of γ^* parton collision

restricted phase space for real gluon emission

We don't touch the DGLAP part

Ş

 $\overset{\split}{=}$ Resummation at the coefficient function level :

$$F_2^{NS}(x,Q^2) = xq(x,Q^2) + \frac{\alpha_s}{4\pi} \sum_q \int_x^1 dz \, B_{\rm NS}^q(z) \, \frac{x}{z} \, q\left(\frac{x}{z},Q^2\right)$$

Divergent term at x→1,
$$B_{NS}^{q}(z) = \left[\hat{P}_{qq}^{(0)}(z) \left\{ \ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right\} + \text{E.P.} \right]_{+}$$

- We don't touch the DGLAP part
- $\overset{\split}{=}$ Resummation at the coefficient function level :

$$F_2^{NS}(x,Q^2) = xq(x,Q^2) + \frac{\alpha_s}{4\pi} \sum_q \int_x^1 dz \, B_{\rm NS}^q(z) \, \frac{x}{z} \, q\left(\frac{x}{z},Q^2\right)$$

at
$$\mathbf{x} \to \mathbf{1}$$
, $B_{\text{NS}}^{q}(z) = \left[\hat{P}_{qq}^{(0)}(z) \left\{ \ln\left(\frac{1-z}{z}\right) - \frac{3}{2} \right\} + \text{E.P.} \right]_{+}$

- $rac{1}{2}$ Need to be resummed to all logs in the argument of α_s
 - defining the correct kinematics $\alpha_s(Q^2) \to \alpha_s\left(Q^2 \frac{(1-z)}{z}\right)$

[A.C. & Liuti, Phys.Lett. B726 (2013)]

Resummed as (contains all logs):

Divergent term

Ş

$$\ln(1-z) = \frac{1}{\alpha_{s,\text{LO}}(Q^2)} \int^{Q^2} d\ln Q^2 \left[\alpha_{s,\text{LO}}(Q^2(1-z)) - \alpha_{s,\text{LO}}(Q^2) \right] \equiv \ln_{\text{LxR}}$$

Behaviour of the coupling constant

LO exact solution

 Λ =174MeV \rightarrow reaches Landau pole at Q=174MeV

expansion in α_{s} :

$$\alpha_s(\tilde{W}^2) = \alpha_s(Q^2) - \frac{\beta_0}{4\pi} \ln\left(\frac{1-z}{z}\right) \,\alpha_s^2(Q^2)$$

full dependence in z

 Λ =174MeV \rightarrow reaches Landau pole at Q >174MeV

Behaviour of the coupling constant

LO exact solution

 Λ =174MeV \rightarrow reaches Landau pole at Q=174MeV

expansion in α_{s} :

$$\alpha_s(\tilde{W}^2) = \alpha_s(Q^2) - \frac{\beta_0}{4\pi} \ln\left(\frac{1-z}{z}\right) \,\alpha_s^2(Q^2)$$

📽 🔰 full dependence in z

 Λ =174MeV \rightarrow reaches Landau pole at Q >174MeV

 α_s might blow up!

Large-x Resummation: α_s as free parameter

[Courtoy & Liuti, 1208.5636]

• the complete z dependence of $\alpha_s(\tilde{W}^2)$ Cut

Large-x Resummation: α_s as free parameter

[Courtoy & Liuti, 1208.5636]

• the complete z dependence of $\alpha_s(\tilde{W}^2)$ Cut

What does a cut in α_s means?

Back to duality

Parametrize the nonperturbative effects from realization of duality

Freeze $lpha_{
m s}$ by imposing a z_{max} : $\widetilde{W}^2(z_{
m m})$

$$\widetilde{W}^2(z_{\max}) = Q^2(1-z_{\max})/z_{\max}$$

Solution $\stackrel{\scriptstyle \frown}{}$ Changes the behavior of the coefficient function $x \rightarrow 1$

Back to duality

Parametrize the nonperturbative effects from realization of duality

- Freeze α_s by imposing a z_{max} : $\widetilde{W}^2(z_{max}) = Q^2(1-z_{max})/z_{max}$
- $\overset{\text{\tiny }}{\overset{\text{\tiny }}{\overset{\text{}}}}$ Changes the behavior of the coefficient function $x \rightarrow 1$

 $\frac{1}{2}$ Realization of duality depends on z_{max} :

$$R^{\text{exp/th}}(z_{\text{max}}, Q^2) = \frac{\int_{x_{\text{min}}}^{x_{\text{max}}} dx \, F_2^{\text{exp}}(x, Q^2)}{\int_{x_{\text{min}}}^{x_{\text{max}}} dx \, F_2^{NS, \text{Resum}}(x, z_{\text{max}}, Q^2)} = \frac{I^{\text{exp}}}{I^{\text{Resum}}} = 1$$

$\overset{\frown}{=}$ Adjust z_{max} according to the data

Results

	$Q^2 \; [{ m GeV^2}]$	$I^{ m exp}(Q^2)$	$I^{(0),\mathrm{DIS}}(Q^2)$	$I^{(0),\mathrm{DIS+TMC}}(Q^2)$	$I^{\rm Resum}(z_{\rm max},Q^2)$	$z_{ m max}$
	1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
	2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
b data	3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
	5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
	6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
	4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
C data	5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
ouuu	6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
Lett. B282	7.	0.531×10^{-2}	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
	8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	0.363×10^{-2}	0.845

JLab

SLA

Phys.l

Results

$Q^2 [\text{GeV}^2]$	$I^{ m exp}(Q^2)$	$I^{(0),\mathrm{DIS}}(Q^2)$	$I^{(0),\mathrm{DIS+TMC}}(Q^2)$	$I^{ m Resum}(z_{ m max},Q^2)$	$z_{ m max}$
1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
7.	0.531×10^{-2}	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	0.363×10^{-2}	0.845

JLab data

SLAC data

Phys.Lett. B282

$Q^2 [{ m GeV^2}]$	$I^{ m exp}(Q^2)$	$I^{(0),\mathrm{DIS}}(Q^2)$	$I^{(0),\text{DIS+TMC}}(Q^2)$	$I^{ m Resum}(z_{ m max},Q^2)$	$z_{ m max}$
1.75	6.994×10^{-2}	5.316×10^{-2}	5.345×10^{-2}	7.025×10^{-2}	0.63
2.5	4.881×10^{-2}	2.765×10^{-2}	3.393×10^{-2}	4.872×10^{-2}	0.745
3.75	2.356×10^{-2}	1.201×10^{-2}	1.756×10^{-2}	2.359×10^{-2}	0.76
5.	1.267×10^{-2}	0.553×10^{-2}	0.942×10^{-2}	1.270×10^{-2}	0.79
6.5	0.685×10^{-2}	0.170×10^{-2}	0.372×10^{-2}	0.683×10^{-2}	0.9
4.	2.045×10^{-2}	1.017×10^{-2}	1.487×10^{-2}	2.041×10^{-2}	0.79
5.	1.255×10^{-2}	0.550×10^{-2}	0.909×10^{-2}	1.255×10^{-2}	0.811
6.	0.802×10^{-2}	0.317×10^{-2}	0.581×10^{-2}	0.803×10^{-2}	0.825
7.	0.531×10^{-2}	0.191×10^{-2}	0.383×10^{-2}	0.532×10^{-2}	0.837
8.	0.363×10^{-2}	0.122×10^{-2}	0.262×10^{-2}	$0.363 imes10^{-2}$	0.845

 $O^{2} \frac{(1-z)}{2}$

 α_s

JLab data

SLAC data

Phys.Lett. B282

 α_{s} (Q²<1GeV²)/ π =0.16

α_{s} (Q²<1GeV²)/ π =0.16

~optimal parametrization scale of the dynamical PDF fit GJR

A.C. & Liuti, Phys Lett B726 (2013)

Comparison with nonperturbative approaches

Comparison with nonperturbative approaches

Free parameters of the theories can be fitted

Here Λ is free BUT it has to be adapted

Effective charges & schemes

[[]Brodsky et al., Phys.Rev.D81]

Effective charges & schemes

schemes (and their physical content)

in the NP regime ?

[[]Brodsky et al., Phys.Rev.D81]

How to relate the effective couplings?

- Commensurate Scale Relations?
- **RG-improved perturbation theory?**

[Brodsky & Lu, Phys. Rev. D251]

Possible higher-twist effects

Note: Ambiguities at the pQCD analysis level

- Quark-gluon interaction is expected to dominate at $x \rightarrow 1$
- **Resonances** $=\infty$ number of twists
- Intricate rôle of higher-twist at the frontier with NP QCD
 - → compatibility with confinement?
- $\overset{\odot}{=}$ Here: all the nonperturbative effects into α_s
 - → smooth transition from perturbative to nonperturbative physics

Possible higher-twist effects

Note: Ambiguities at the pQCD analysis level

- Quark-gluon interaction is expected to dominate at $x \rightarrow 1$
- **Resonances** $=\infty$ number of twists
- Intricate rôle of higher-twist at the frontier with NP QCD
 - → compatibility with confinement?
- Here: all the nonperturbative effects into α_s
 - → smooth transition from perturbative to nonperturbative physics

Possibly 'double' counting due to uncertainty on PDFs at large-x

Large-x, the other way round

- $\stackrel{\scriptstyle{\otimes}}{=}$ When x \rightarrow 1, \rightarrow elastic scattering
- Exclusive scattering
- Intertwine with resonance region
- How to obtain clean PDFs?
 - ➡ using DUALITY !

Large-x, the other way round

- When $x \rightarrow 1$, \rightarrow elastic scattering
- Exclusive scattering
- Intertwine with resonance region
- How to obtain clean PDFs?
 - ➡ using DUALITY !
- $\stackrel{\scriptstyle{\otimes}}{=}$ usually thru a Higher-twist term $\mathcal{O}(1/Q^2)$
- $\overset{\scriptscriptstyle{\otimes}}{=}$ correction of the same ${\cal O}$ as cut in α_s
- Only solution: properly fit large-x PDFs !

Z' and W' searches: e.g. ATLAS-CONF-2012-129

- x_{min}=Mx²/s~large
- **PDF uncertainties** + α_s ... at 2TeV~20%
- Large-x DOES matter

talk by S.Forte at PDF4LHC meeting

Z' and W' searches: e.g. ATLAS-CONF-2012-129

- ⅔ x_{min}=Mx²/s~large
- **PDF uncertainties** + α_s ... at 2TeV~20%
- Large-x DOES matter

Brady et al, JHEP (2012) 1206

Data set for PDF fits

Large-x: present and future

Large-x: present and future

Extension of the SOMPDF [Askanazi et al, 1309.7085] in preparation [Askanazi et al.]
Conclusions

- Analyzis of the Bloom-Gilman quark-hadron duality in perturbative QCD
- Its realization is parametrized by the freezing of the running coupling constant
- Our approach:

- All the NP effects are embedded in the effective charge at the hadronic scale
- The hadronic scale turns out to be $Q_0^2 = 1 \text{ GeV}^2$

α_s (Q²<1GeV²)/π=0.16

- **Doesn't disagree with NP approaches.**
- **Comparison of perturbative & NP schemes has to be understood!**

Hadronic physics:

- Intersection between perturbative and non-perturbative QCD
- **Transition of degrees of freedom**
- Non-perturbative QCD provides (or shall provide) for INPUTS to pQCD
- **QCD** as a whole
- Impact on high energy phenomenology
 - hadronic matrix elements (spin also matters)
 - $\stackrel{\scriptstyle \swarrow}{=}$ QCD evolution (Q₀², scale, α_s)
 - **fits/extractions**

Hadronic physics:

- Intersection between perturbative and non-perturbative QCD
- **Transition of degrees of freedom**
- Non-perturbative QCD provides (or shall provide) for INPUTS to pQCD
- **QCD** as a whole
- Impact on high energy phenomenology
 - hadronic matrix elements (spin also matters)
 - $\stackrel{\scriptstyle \searrow}{=}$ QCD evolution (Q₀², scale, α_s)
 - **fits/extractions**

- **Rich phenomenology in itself:**
 - **confinement, chiral symmetry, duality**
 - knowledge on the proton!