

4th International Workshop on Transverse Polarisation Phenomena in Hard Processes

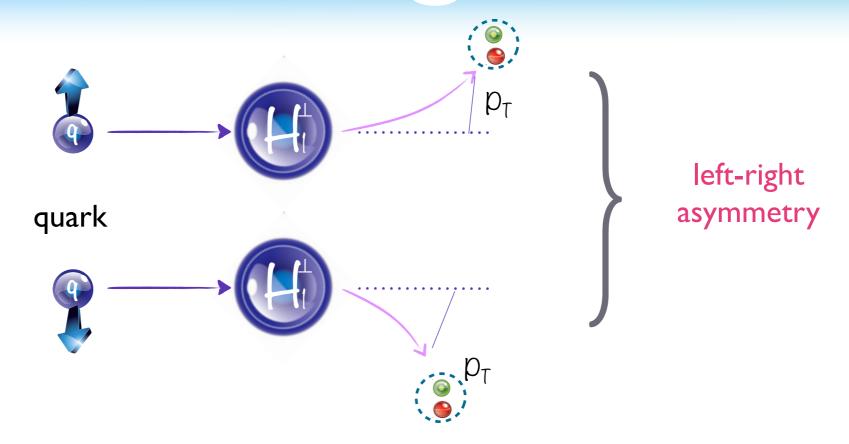
(Transversity 2014)

Chia, June 9<sup>th</sup>-13<sup>th</sup> 2014

Francesca Giordano, for the BELLE collaboration

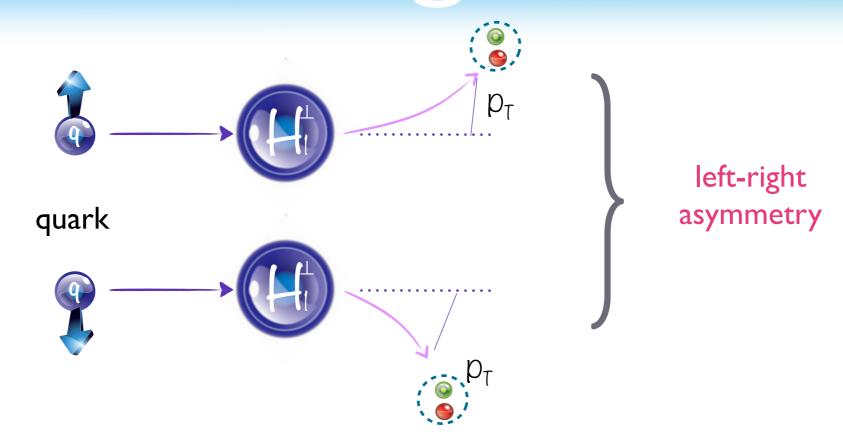






Collins mechanism: correlation between the parton transverse spin and the direction of final hadron



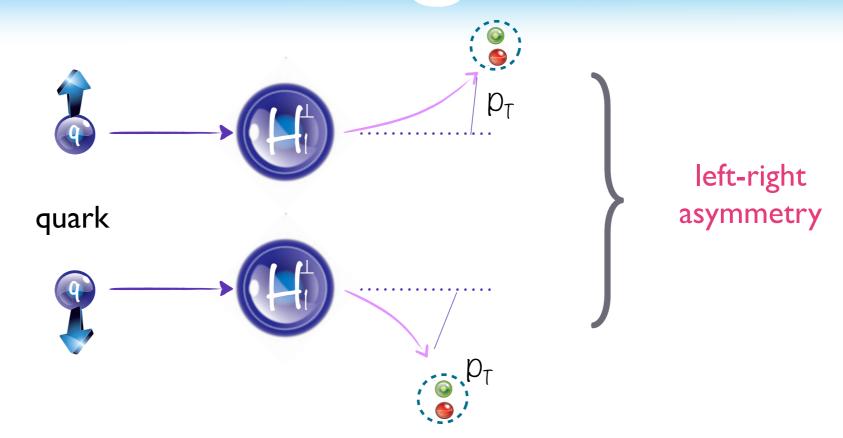


Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

strictly related to the outgoing hadron tranverse momentum







Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

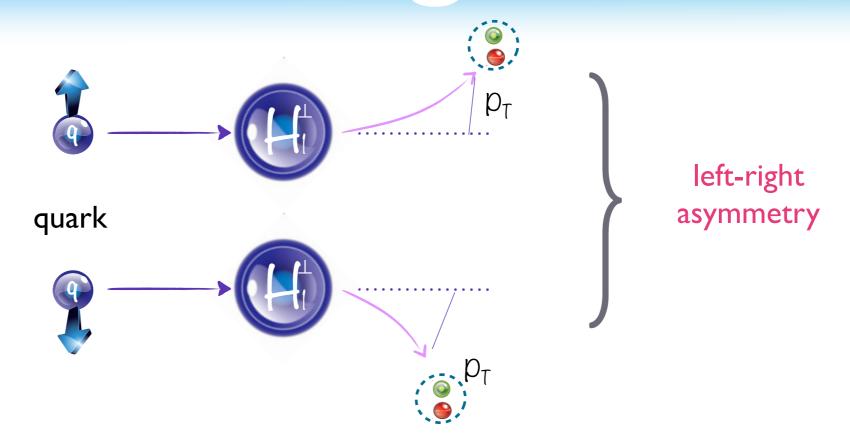
strictly related to the outgoing hadron tranverse momentum



### Chiral odd!

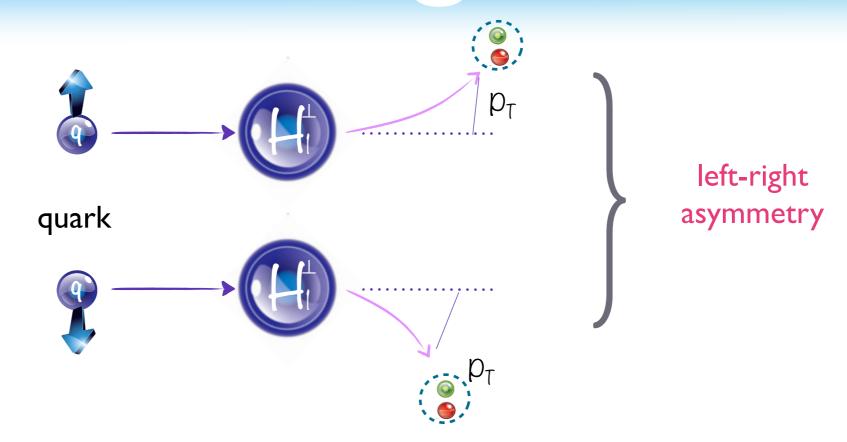






In e+e- reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be 0





In e+e- reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be 0

But if we look at the whole event, even though the q and  $\bar{q}$  spin directions are unknown, they must be parallel

$$e^+e^- \to q \, \bar{q} \to h_1 \, h_2 \, X$$
  
 $h = \pi, K$ 

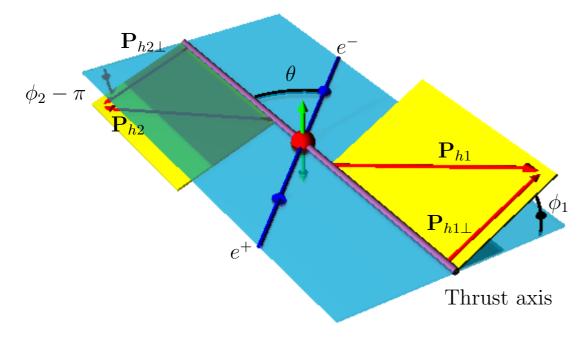


$$e^+e^- \rightarrow q \, \bar{q} \rightarrow h_1 \, h_2 \, X$$

$$h=\pi, K$$

 $\phi_1 + \phi_2$  method:

hadron azimuthal angles with respect to the qq axis proxy

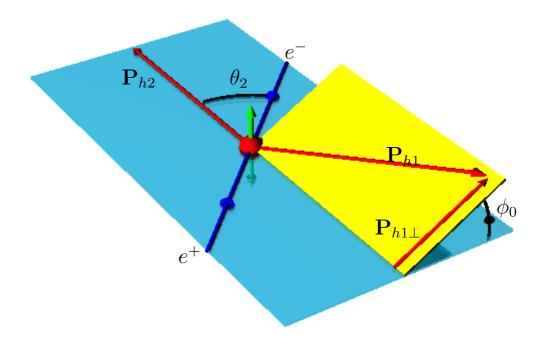


reference plane (in blue) given by the e+e- direction and the qq axis

Thrust axis= proxy for the  $q\bar{q}$  axis

 $\phi_0$  method:

hadron I azimuthal angle with respect to hadron 2

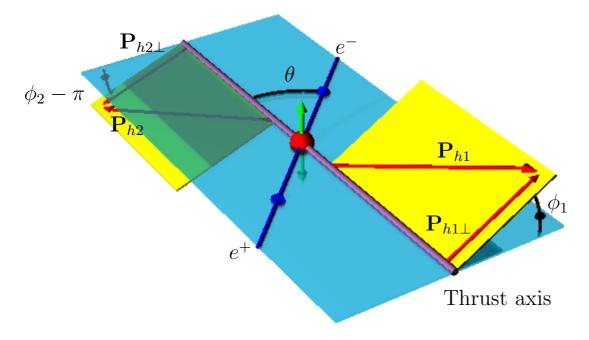


reference plane (in blue) given by the e+e- direction and one of the hadron



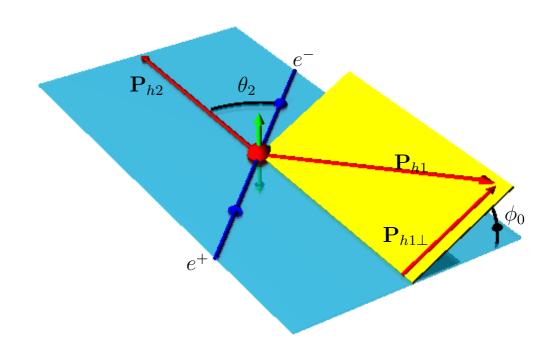
#### $\phi_1 + \phi_2$ method:

hadron azimuthal angles with respect to the qq axis proxy



#### $\phi_0$ method:

hadron I azimuthal angle with respect to hadron 2



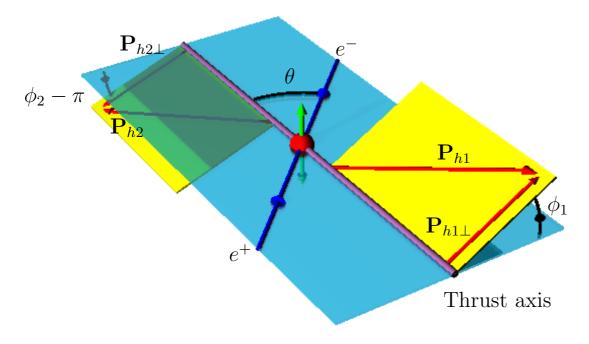
$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

$$F^{[n]}(z_i) \equiv \int d|k_T|^2 \left[ \frac{|k_T|}{M_i} \right]^{[n]} F(z_i, |k_T|^2)$$

$$F^{[n]}(z_i) \equiv \int d|k_T|^2 \left[\frac{|k_T|}{M_i}\right]^{[n]} F(z_i,|k_T|^2) \qquad \mathcal{F}[X] = \sum_{q\bar{q}} \int [2\hat{\mathbf{h}} \cdot \mathbf{k_{T1}} \hat{\mathbf{h}} \cdot \mathbf{k_{T2}} - \mathbf{k_{T1}} \cdot \mathbf{k_{T2}}] \\ d^2\mathbf{k_{T1}} d^2\mathbf{k_{T2}} \, \delta^2(\mathbf{k_{T1}} + \mathbf{k_{T2}} - \mathbf{q_T}) X$$
ncesca Giordano

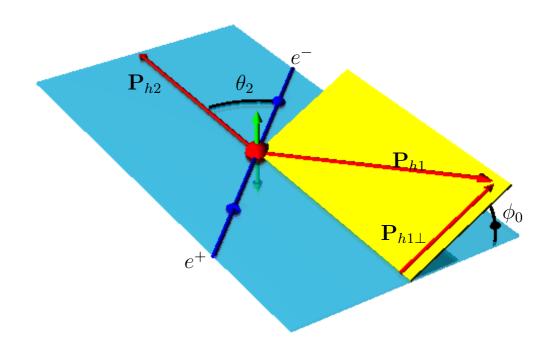
#### $\phi_1 + \phi_2$ method:

hadron azimuthal angles with respect to the qq axis proxy



#### $\phi_0$ method:

hadron I azimuthal angle with respect to hadron 2



$$\sigma \sim \mathcal{M}_{12} \left( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \right) \quad \sigma \sim \mathcal{M}_0 \left( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right] \right)$$

$$F^{[n]}(z_i) \equiv \int d|k_T|^2 \left[ \frac{|k_T|}{M_i} \right]^{[n]} F(z_i, |k_T|^2)$$

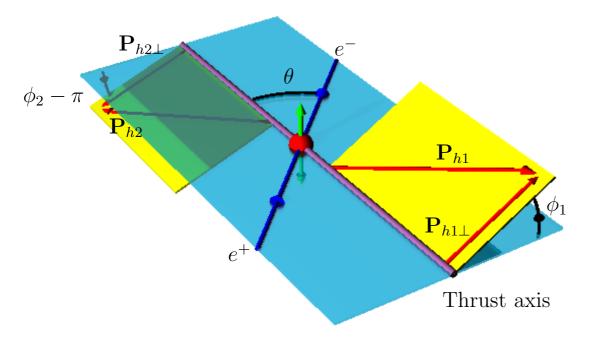
$$\mathcal{F}[X] = \sum_{q\bar{q}} \int [2\hat{\mathbf{h}} \cdot \mathbf{k_{T1}} \hat{\mathbf{h}} \cdot \mathbf{k_{T2}} - \mathbf{k_{T1}} \cdot \mathbf{k_{T2}}]$$

$$d^2\mathbf{k_{T1}} d^2\mathbf{k_{T2}} \delta^2(\mathbf{k_{T1}} + \mathbf{k_{T2}} - \mathbf{q_T})X$$

$$k_{Ti} = z_i p_{Ti}$$

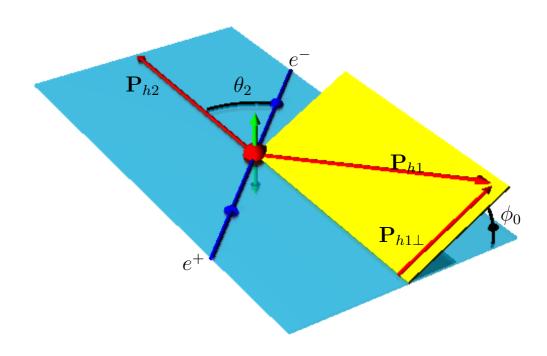
#### $\phi_1 + \phi_2$ method:

hadron azimuthal angles with respect to the qq axis proxy



#### $\phi_0$ method:

hadron I azimuthal angle with respect to hadron 2



$$\sigma \sim \mathcal{M}_{12} \left( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \right) \quad \sigma \sim \mathcal{M}_0 \left( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right] \right)$$

$$F^{[n]}(z_i) \equiv \int d|k_T|^2 \left[ \frac{|k_T|}{M_i} \right]^{[n]} F(z_i, |k_T|^2)$$

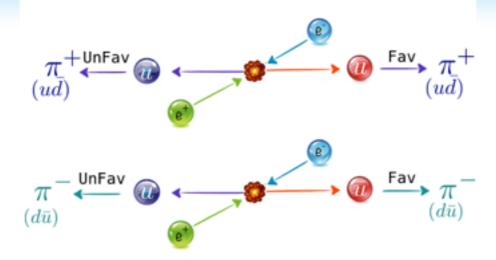
$$\mathcal{F}[X] = \sum_{q\bar{q}} \int [2\hat{\mathbf{h}} \cdot \mathbf{k_{T1}} \hat{\mathbf{h}} \cdot \mathbf{k_{T2}} - \mathbf{k_{T1}} \cdot \mathbf{k_{T2}}]$$

$$d^{2}\mathbf{k_{T1}}d^{2}\mathbf{k_{T2}}\,\delta^{2}(\mathbf{k_{T1}} + \mathbf{k_{T2}} - \mathbf{q_{T}})X$$
$$k_{Ti} = z_{i}\,p_{Ti}$$

$$k_{Ti} = z_i \, p_{Ti}$$

### Product of 2 Collins FFs

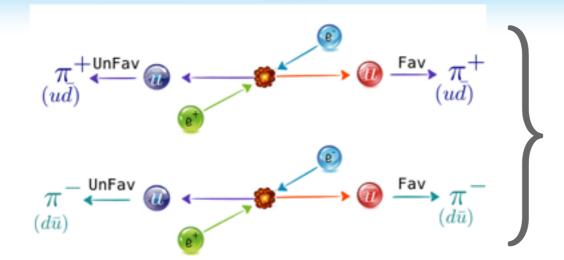
Like-sign couples





### Product of 2 Collins FFs

Like-sign couples

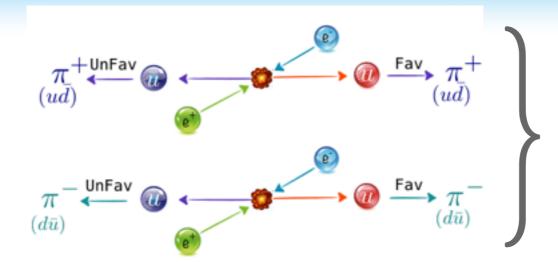


 $[Fav \cdot UnFav] + [Fav \cdot UnFav]$ 

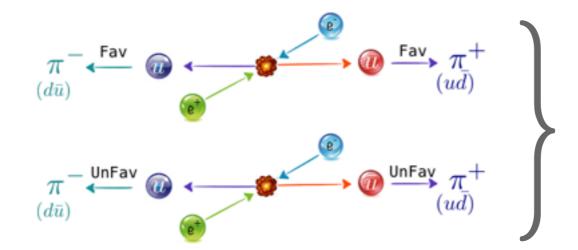


### Product of 2 Collins FFs

Like-sign couples

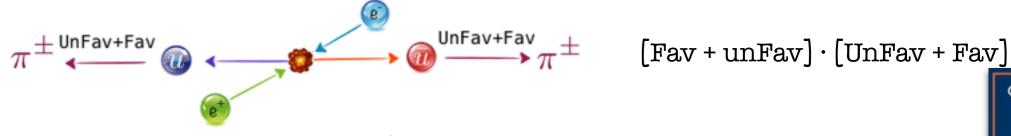


Unlike-sign couples



 $[Fav \cdot Fav] + [UnFav \cdot UnFav]$ 

All charges couples

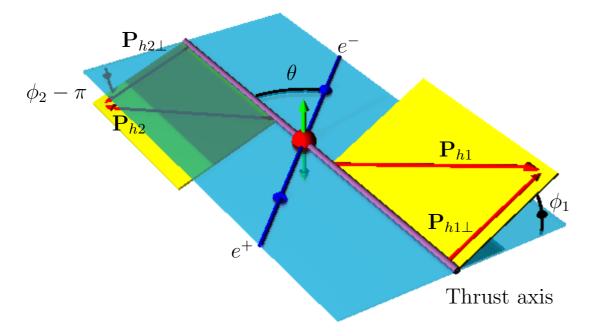


$$e^+e^- \to q \, \bar{q} \to h_1 \, h_2 \, X$$

$$h=\pi, K$$

 $\phi_1 + \phi_2$  method:

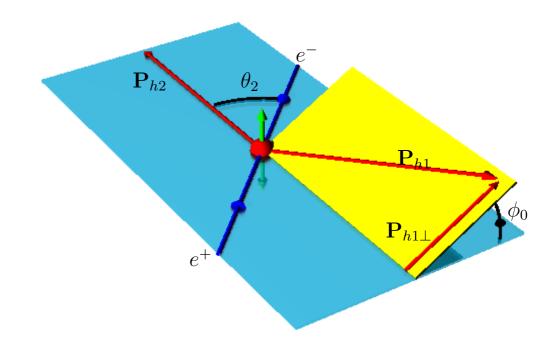
hadron azimuthal angles with respect to the qq axis proxy



$$\mathcal{R}_{12} = \frac{N_{12}(\phi_1 + \phi_2)}{\langle N_{12} \rangle}$$

 $\phi_0$  method:

hadron I azimuthal angle with respect to hadron 2



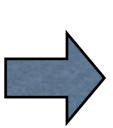
$$\mathcal{R}_0 = \frac{N_0(\phi_0)}{\langle N_0 \rangle}$$

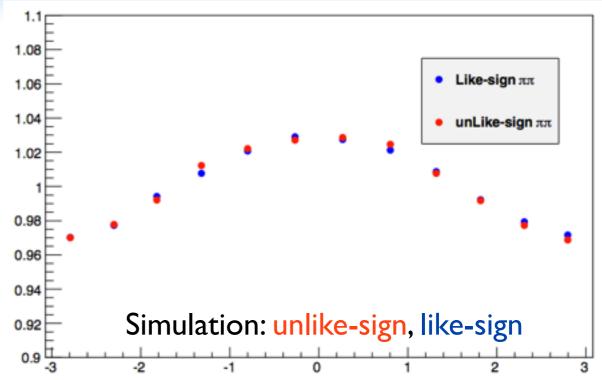


But! Acceptance and radiation effects also contribute to azimuthal asymmetries!

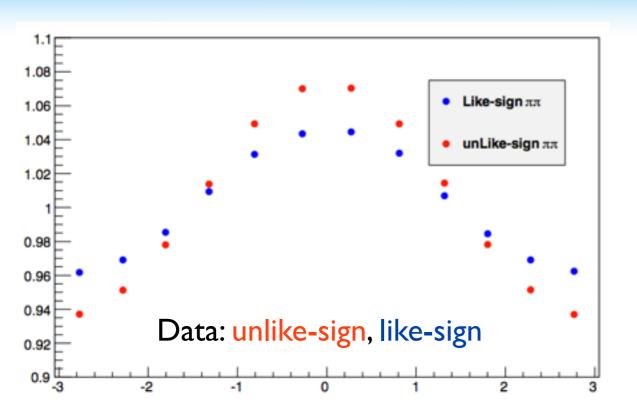


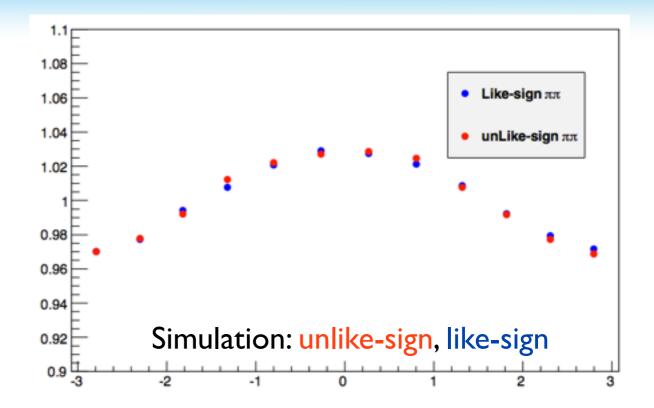
But! Acceptance and radiation effects also contribute to azimuthal asymmetries!



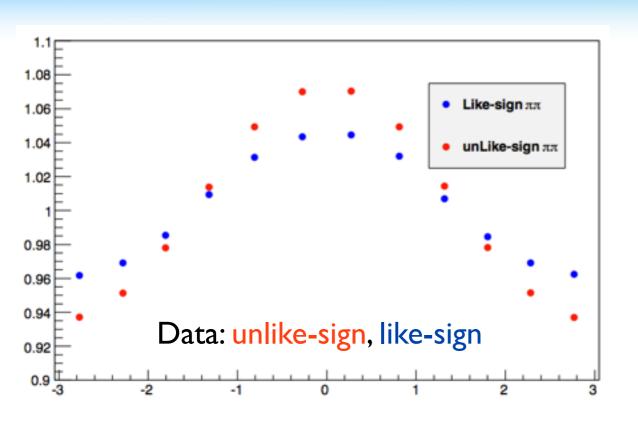


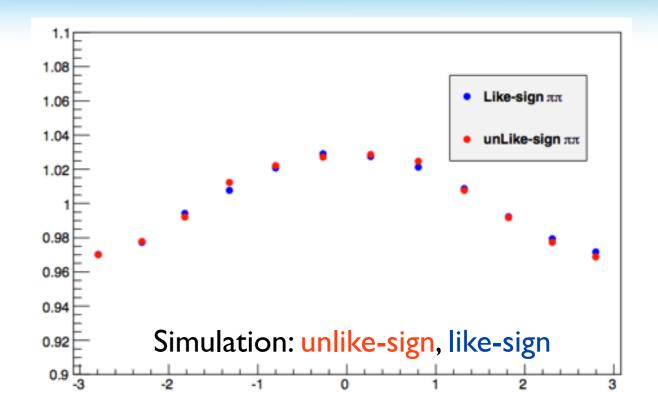












To reduce such non-Collins effects:

divide the sample of hadron couples in unlike-sign and like-sign (or All-charges), and extract the asymmetries of the super ratios between these 2 samples:

Unlike-sign couples / Like-sign couples

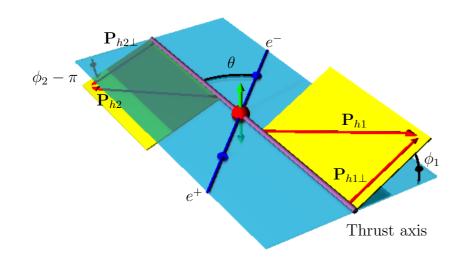
$$\mathcal{D}_{ul}^{h_1h_2} = \mathcal{R}^U/\mathcal{R}^L$$

Unlike-sign couples / All charges

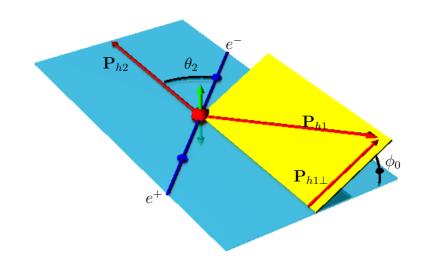
$$\mathcal{D}_{uc}^{h_1 h_2} = \mathcal{R}^U / \mathcal{R}^C$$



 $\phi_1 + \phi_2$  method



#### $\phi_0$ method



$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \underbrace{\cos(\phi_1 + \phi_2)}^{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)} \underbrace{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \underbrace{\cos(2\phi_0)}_{Cos(2\phi_0)} \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

$$\mathcal{D}_{ul}^{h_1 h_2} = \mathcal{R}^U / \mathcal{R}^L$$

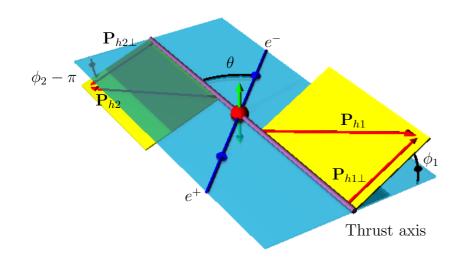
 $\mathcal{D}_{ul}^{h_1 h_2} = \mathcal{R}^U / \mathcal{R}^L$   $\mathcal{B}_{12} (1 + \mathcal{A}_{12} \cos(\phi_1 + \phi_2))$ 

$$\mathcal{D}_{uc}^{h_1 h_2} = \mathcal{R}^U / \mathcal{R}^C$$

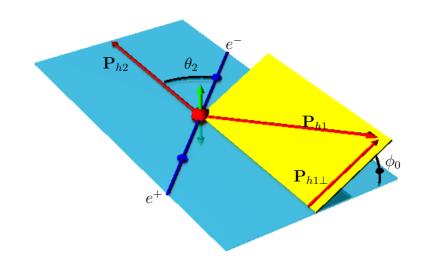
$$\mathcal{B}_0(1+\mathcal{A}_0\cos(2\phi_0))$$



#### $\phi_1 + \phi_2$ method



#### $\phi_0$ method



$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

Fitted by

$$A_{12} = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \frac{H_1^{\perp[1]}(z_1) \bar{H}_1^{\perp[1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)}$$

 $\mathcal{B}_{12}(1+\mathcal{A}_{12}\cos(\phi_1+\phi_2))$ 

$$A_0 = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right]$$

$$\mathcal{B}_0(1+\mathcal{A}_0\cos(2\phi_0))$$



### Kinematic variables

$$z \equiv \frac{E_h}{E_p}$$

hadron energy fraction with respect to parton

Z1, Z2

 $p_T$  component of hadron momentum transverse to reference direction

I.  $\phi_1 + \phi_2$  method: the thrust axis  $p_{T1}$ ,  $p_{T2}$ 

2.  $\phi_0$  method: hadron 2  $p_{TO}$ 

 $q_T$  component of virtual photon momentum transverse to the h<sub>1</sub>h<sub>2</sub> axis in the frame where h<sub>1</sub> and h<sub>2</sub> are back-to-back

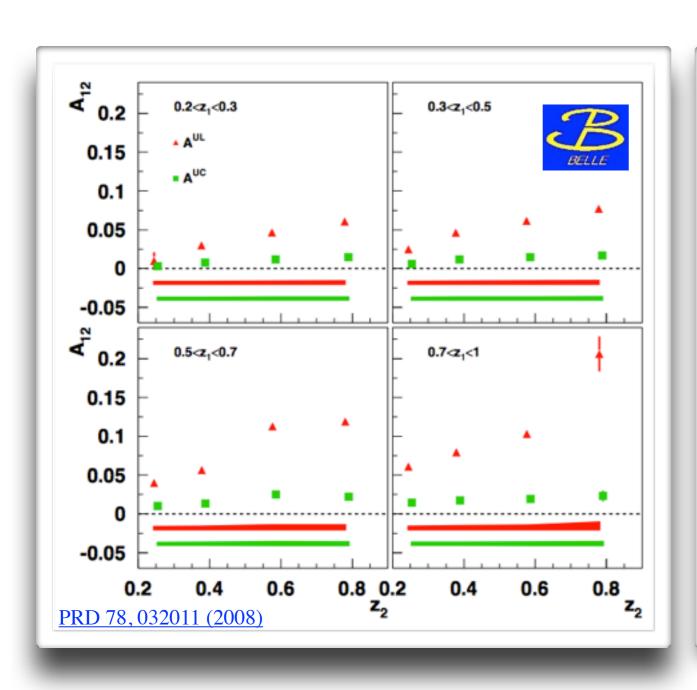
| Z                                     | 0.2 | 0.25 | 0.3  | 0.42 | I   |      |      |      |     |
|---------------------------------------|-----|------|------|------|-----|------|------|------|-----|
| Рт12                                  | 0   | 0.13 | 0.3  | 0.5  | 3   |      |      |      |     |
| Рто                                   | 0   | 0.13 | 0.25 | 0.4  | 0.5 | 0.6  | 0.75 | I    | 3   |
| qт                                    | 0   | 0.5  | İ    | 1.25 | 1.5 | 1.75 | 2    | 2.25 | 2.5 |
| $\sin^2 \Theta / (1 + \cos^2 \Theta)$ | 0.4 | 0.45 | 0.5  | 0.6  | 0.7 | 0.8  | 0.9  | 0.97 | I   |

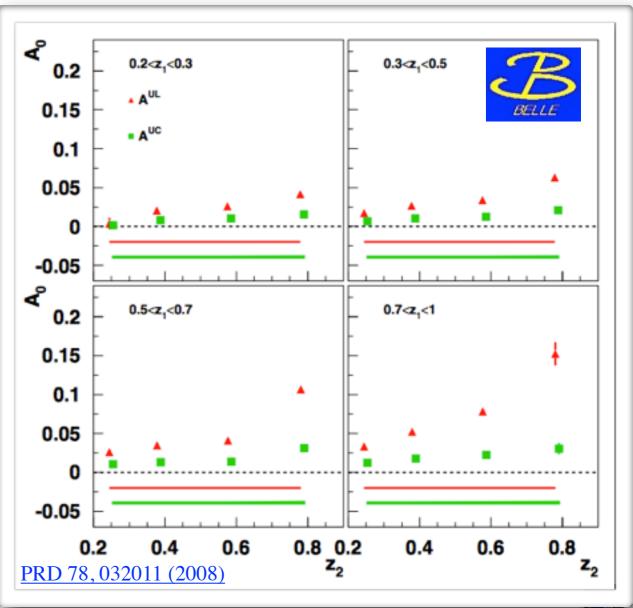


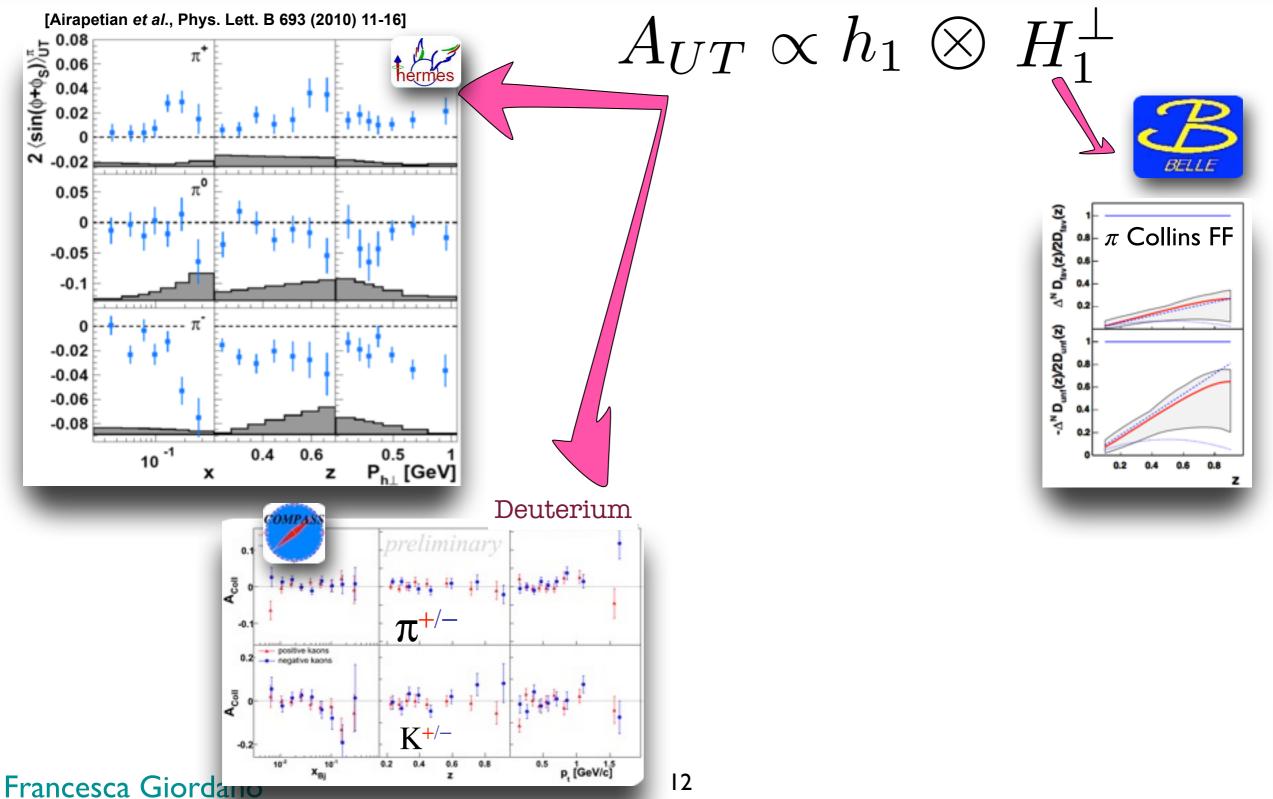
### Published results: $\pi\pi$

 $\phi_1 + \phi_2$  method

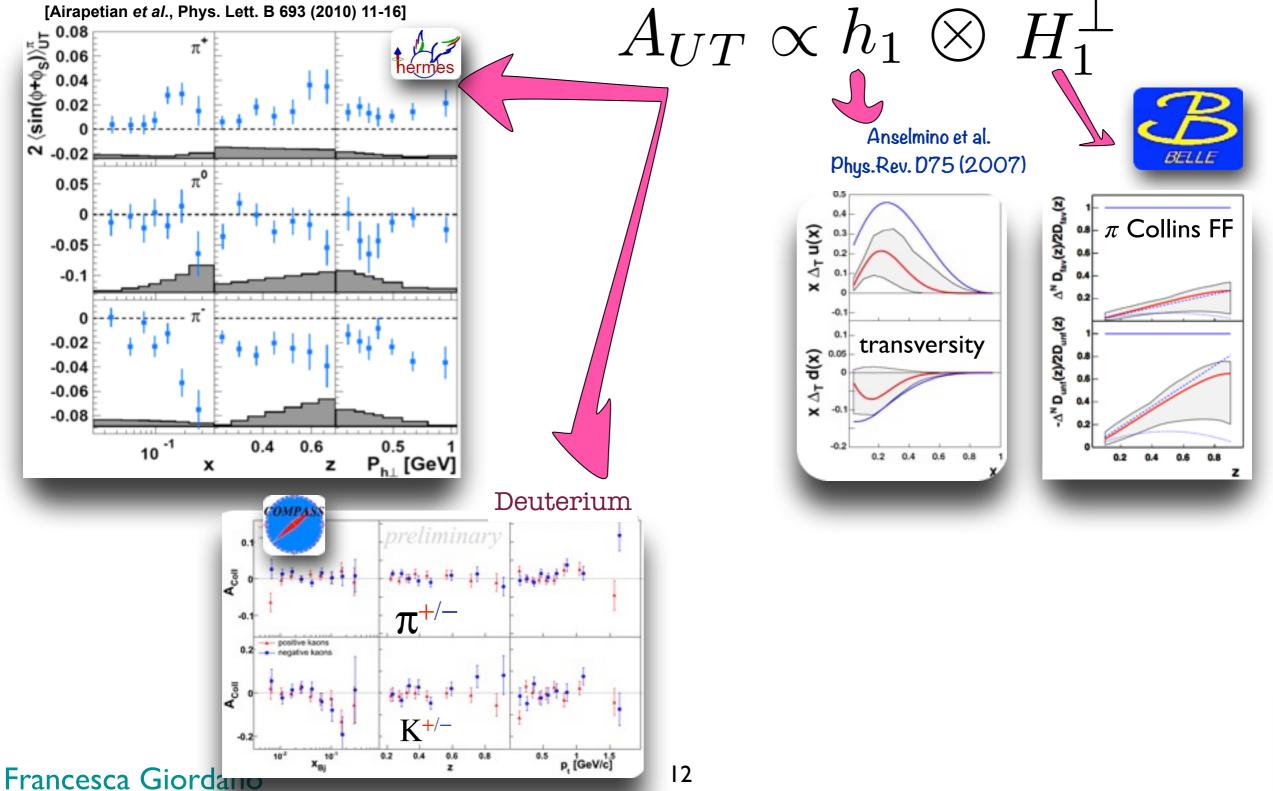
 $\phi_0$  method



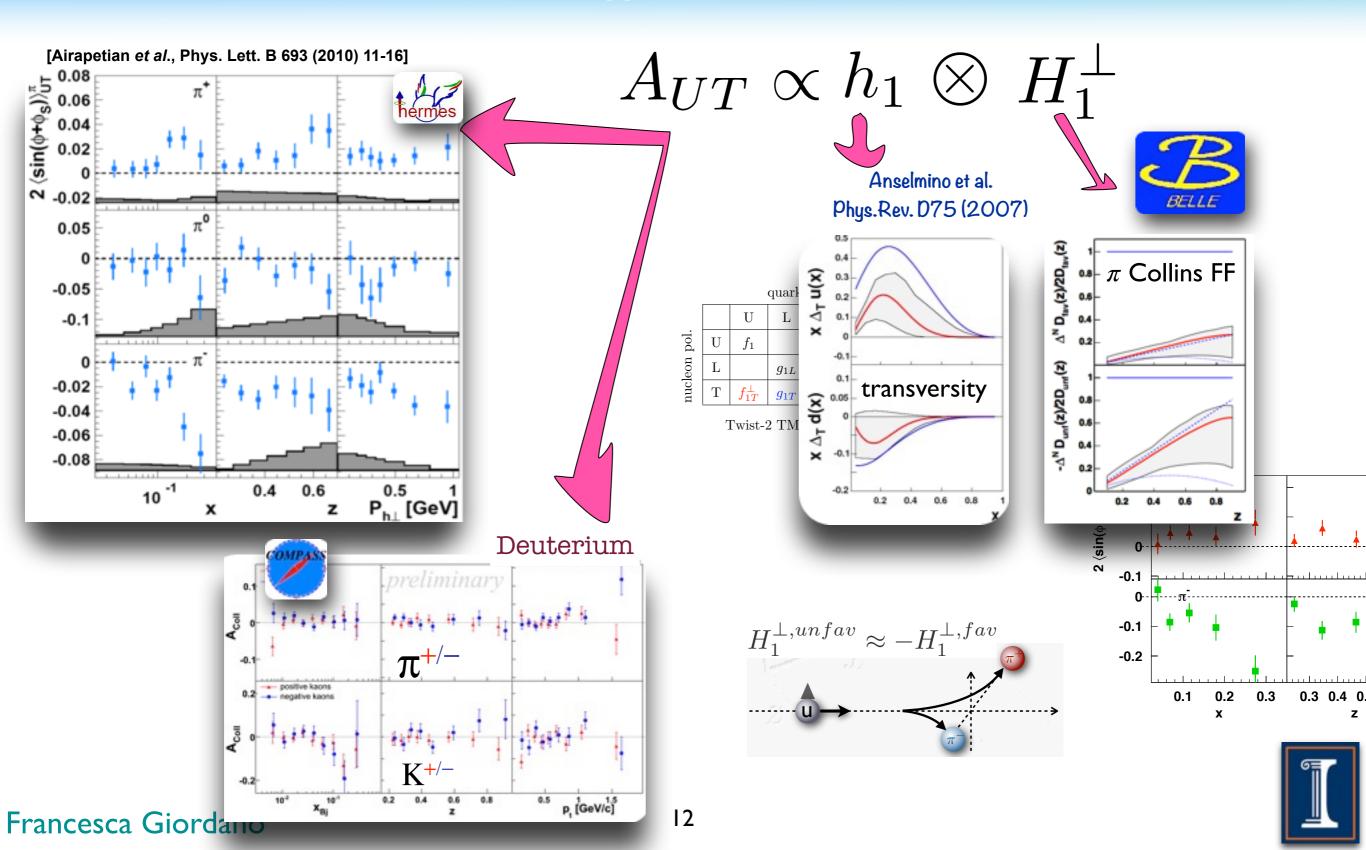


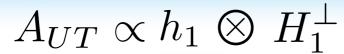


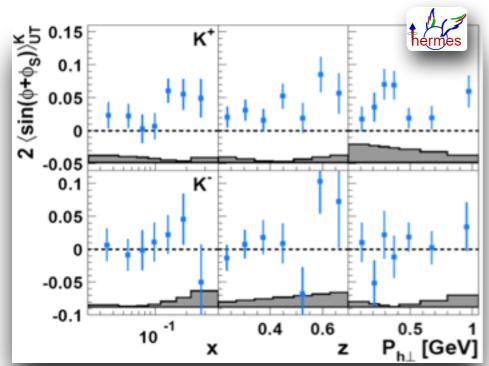


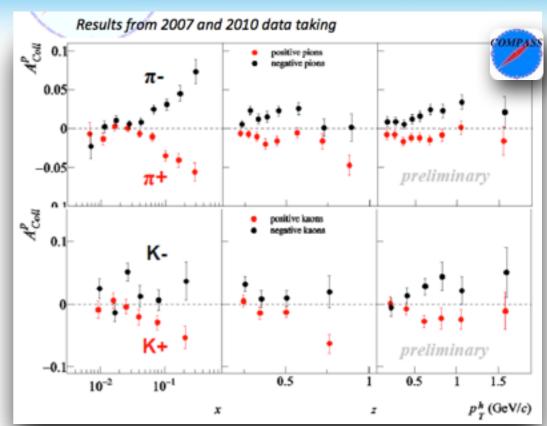




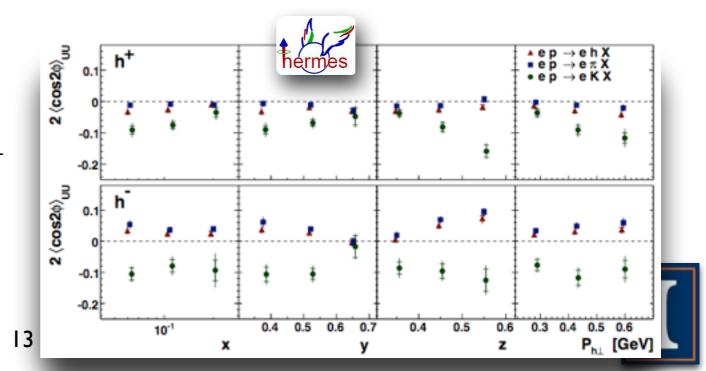


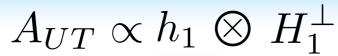


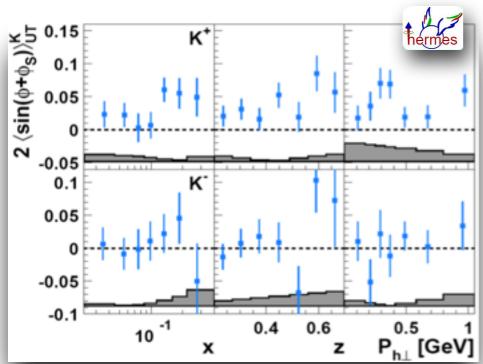




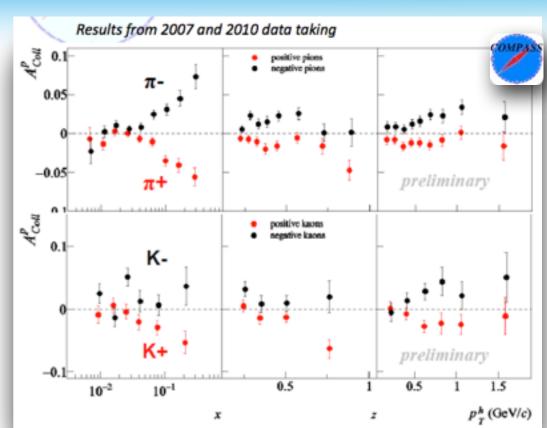
$$A_{UU} \propto h_1^{\perp} \otimes H_1^{\perp}$$



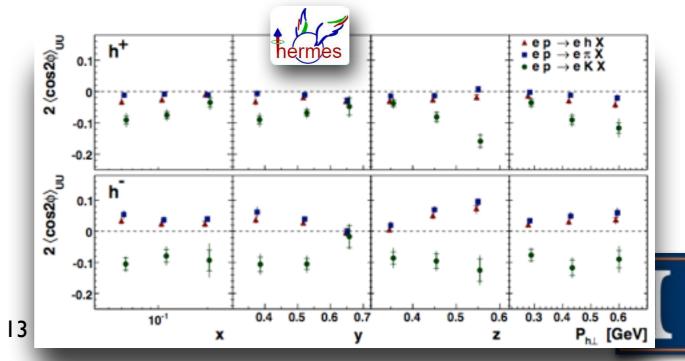




 $K^+$  amplitudes larger than  $\pi^+$ ?



$$A_{UU} \propto h_1^{\perp} \otimes H_1^{\perp}$$



$$\mathcal{D}_{ul}^{\pi\pi} = \mathcal{R}^{U\pi\pi}/\mathcal{R}^{L\pi\pi}$$

$$\mathcal{D}_{ul}^{\pi k} = \mathcal{R}^{U\pi k}/\mathcal{R}^{L\pi k}$$

$$\mathcal{D}_{ul}^{kk} = \mathcal{R}^{Ukk}/\mathcal{R}^{Lkk}$$

|   | Z            | qт       | $\sin^2\Theta/(1+\cos^2\Theta)$ | рт   |
|---|--------------|----------|---------------------------------|------|
| - | $\checkmark$ | <b>√</b> | <b>✓</b>                        | New! |
|   | New!         | New!     | New!                            | New! |
| - | New!         | New!     | New!                            | New! |

$$\mathcal{D}_{uc}^{\pi\pi} = \mathcal{R}^{U\pi\pi}/\mathcal{R}^{C\pi\pi}$$
 $\mathcal{D}_{uc}^{\pi k} = \mathcal{R}^{U\pi k}/\mathcal{R}^{C\pi k}$ 
 $\mathcal{D}_{uc}^{kk} = \mathcal{R}^{Ukk}/\mathcal{R}^{Ckk}$ 

| Z            | <b>q</b> т | $\sin^2 \Theta / (1 + \cos^2 \Theta)$ | Рт   |
|--------------|------------|---------------------------------------|------|
| $\checkmark$ | <b>✓</b>   | <b>✓</b>                              | New! |
| New!         | New!       | New!                                  | New! |
| New!         | New!       | New!                                  | New! |



$$egin{aligned} \mathcal{D}^{\pi\pi}_{ul} &= \mathcal{R}^{U\pi\pi}/\mathcal{R}^{L\pi\pi} \ \mathcal{D}^{\pi k}_{ul} &= \mathcal{R}^{U\pi k}/\mathcal{R}^{L\pi k} \ \mathcal{D}^{kk}_{ul} &= \mathcal{R}^{Ukk}/\mathcal{R}^{Lkk} \end{aligned}$$

| Z            | qт       | $\sin^2\Theta/(1+\cos^2\Theta)$ | Рт   |
|--------------|----------|---------------------------------|------|
| $\checkmark$ | <b>✓</b> | <b>✓</b>                        | New! |
| New!         | New!     | New!                            | New! |
| New!         | New!     | New!                            | New! |

$$\mathcal{D}_{uc}^{\pi\pi} = \mathcal{R}^{U\pi\pi}/\mathcal{R}^{C\pi\pi}$$
 $\mathcal{D}_{uc}^{\pi k} = \mathcal{R}^{U\pi k}/\mathcal{R}^{C\pi k}$ 
 $\mathcal{D}_{uc}^{kk} = \mathcal{R}^{Ukk}/\mathcal{R}^{Ckk}$ 

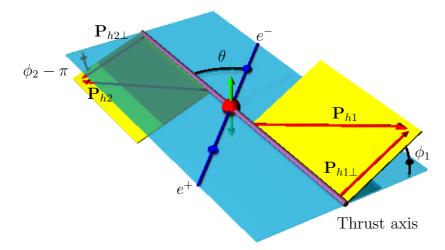
| Z            | qт           | $\sin^2\Theta/(1+\cos^2\Theta)$ | РТ   |
|--------------|--------------|---------------------------------|------|
| $\checkmark$ | $\checkmark$ | <b>✓</b>                        | New! |
| New!         | New!         | New!                            | New! |
| New!         | New!         | New!                            | New! |

Word of caution: this analysis is mainly aimed at kaons, so kinematic cuts and binning are optimized for kaons, and the same values used for pion too.



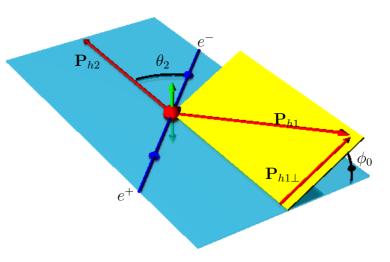


#### $\phi_1 + \phi_2$ method



$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

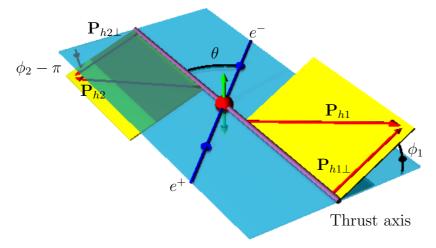
#### $\phi_0$ method



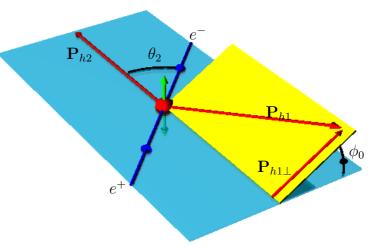
$$\sigma \sim \mathcal{M}_0 \left( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right] \right)$$



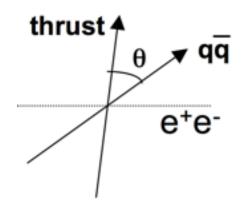
#### $\phi_1 + \phi_2$ method



$$\phi_0$$
 method



$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

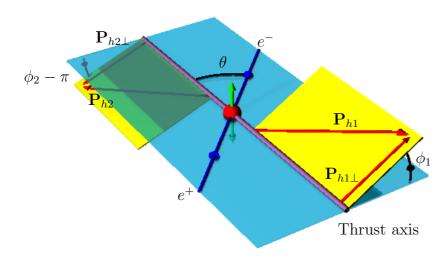


Both interesting: different integration of FFs in  $p_{\text{Ti}}$ , might provide information on the Collins  $p_{\text{T}}$  dependence

Technically more complicated: require the determination of a qq proxy (Thrust axis)

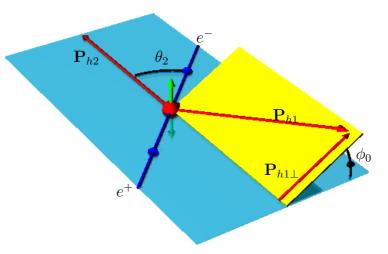


#### $\phi_1 + \phi_2$ method

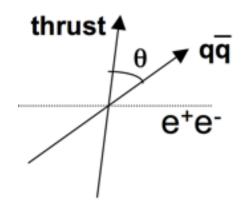


$$\sigma \sim \mathcal{M}_{12} \Big( 1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_1^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \Big] \Big)$$

#### $\phi_0$ method



$$\sigma \sim \mathcal{M}_0 \left( 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right] \right)$$



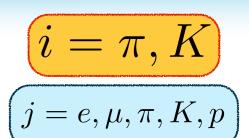
Both interesting: different integration of FFs in p<sub>Ti</sub>, might provide information on the Collins p<sub>T</sub> dependence

Technically more complicated: require the determination of a qq proxy (Thrust axis)



### Particle ID correction

$$N^{j,raw} = P_{ij}N^i$$

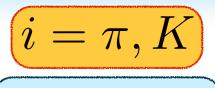


Perfect PID  $\Rightarrow j = i$ 



### Particle ID correction

$$N^{j,raw} = P_{ij}N^i$$



 $j = e, \mu, \pi, K, p$ 

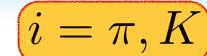
Perfect PID 
$$\Rightarrow j = i$$

$$\varepsilon(\pi) \gtrsim 90\% \ \varepsilon(K) \gtrsim 85\%$$

$$\pi \stackrel{\text{Opposite }}{\longrightarrow} \pi$$

$$P_{ij} = \begin{pmatrix} P_{e \to e} & P_{e \to \mu} & P_{e \to \pi} & P_{e \to K} & P_{e \to p} \\ P_{\mu \to e} & P_{\mu \to \mu} & P_{\mu \to \pi} & P_{\mu \to K} & P_{\mu \to p} \\ P_{\pi \to e} & P_{\pi \to \mu} & P_{\pi \to \pi} & P_{\pi \to K} & P_{\pi \to p} \\ P_{K \to e} & P_{K \to \mu} & P_{K \to \pi} & P_{K \to K} & P_{K \to p} \\ P_{p \to e} & P_{p \to mu} & P_{p \to \pi} & P_{p \to K} & P_{p \to p} \end{pmatrix}$$

### Particle ID correction





Perfect PID  $\Rightarrow j = i$ 

$$\varepsilon(\pi) \gtrsim 90\% \ \varepsilon(K) \gtrsim 85\%$$

$$\pi 
\longrightarrow e, \mu, K, p$$

$$P_{ij} = \begin{pmatrix} P_{e \to e} & P_{e \to \mu} & P_{e \to \pi} & P_{e \to K} & P_{e \to p} \\ P_{\mu \to e} & P_{\mu \to \mu} & P_{\mu \to \pi} & P_{\mu \to K} & P_{\mu \to p} \\ P_{\pi \to e} & P_{\pi \to \mu} & P_{\pi \to \pi} & P_{\pi \to K} & P_{\pi \to p} \\ P_{K \to e} & P_{K \to \mu} & P_{K \to \pi} & P_{K \to K} & P_{K \to p} \\ P_{p \to e} & P_{p \to mu} & P_{p \to \pi} & P_{p \to K} & P_{p \to p} \end{pmatrix}$$



# How to determine the Pij?

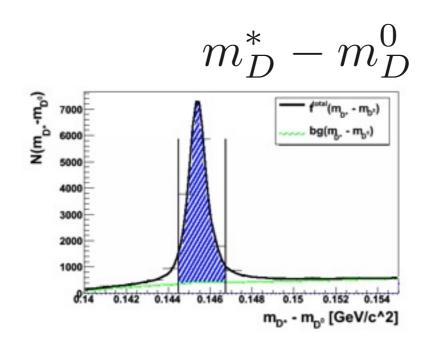
From data!

$$D^* \xrightarrow{D^0} K^-$$

$$\pi_{slow}^+ \qquad \pi_{fast}^+$$

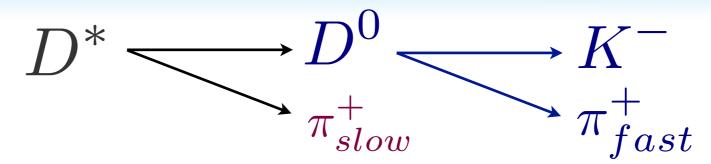


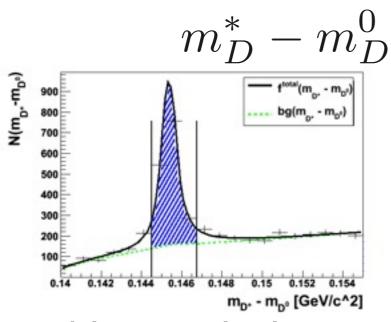
$$D^* \xrightarrow{D^0} \xrightarrow{K^-} \pi_{slow}^+ \qquad \pi_{fast}^+$$



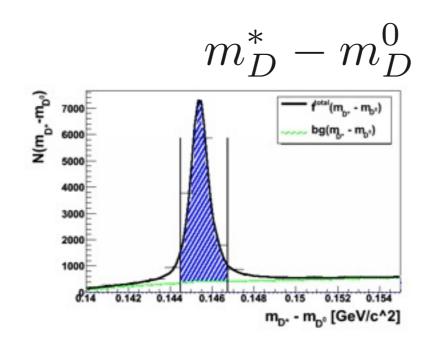
Negative hadron =  $K^-$ (no PID likelihood used)







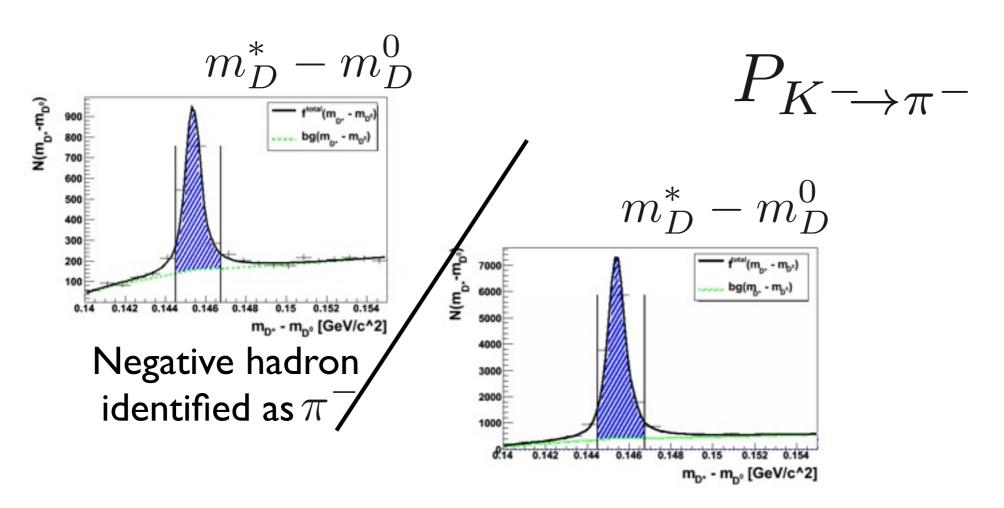
Negative hadron identified as  $\pi^-$ 



Negative hadron =  $K^-$ (no PID likelihood used)



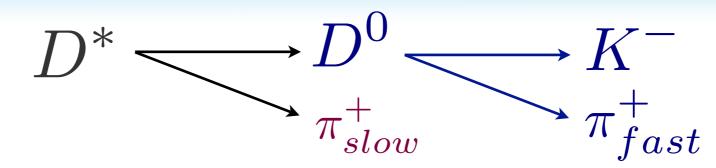
$$D^* \xrightarrow{D^0} \xrightarrow{K^-} \pi_{slow}^+ \qquad \pi_{fast}^+$$

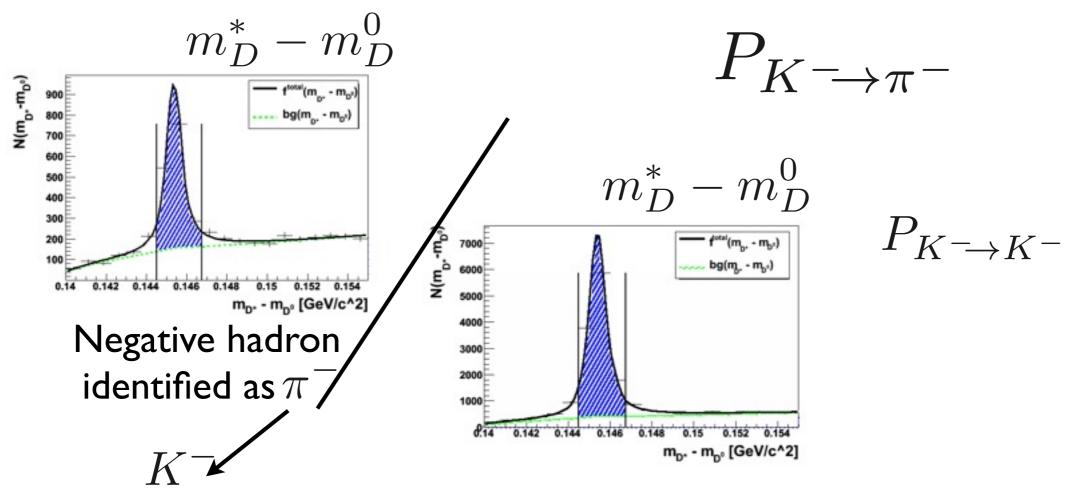


Negative hadron =  $K^-$  (no PID likelihood used)



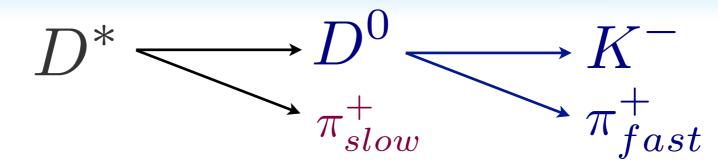
From data!

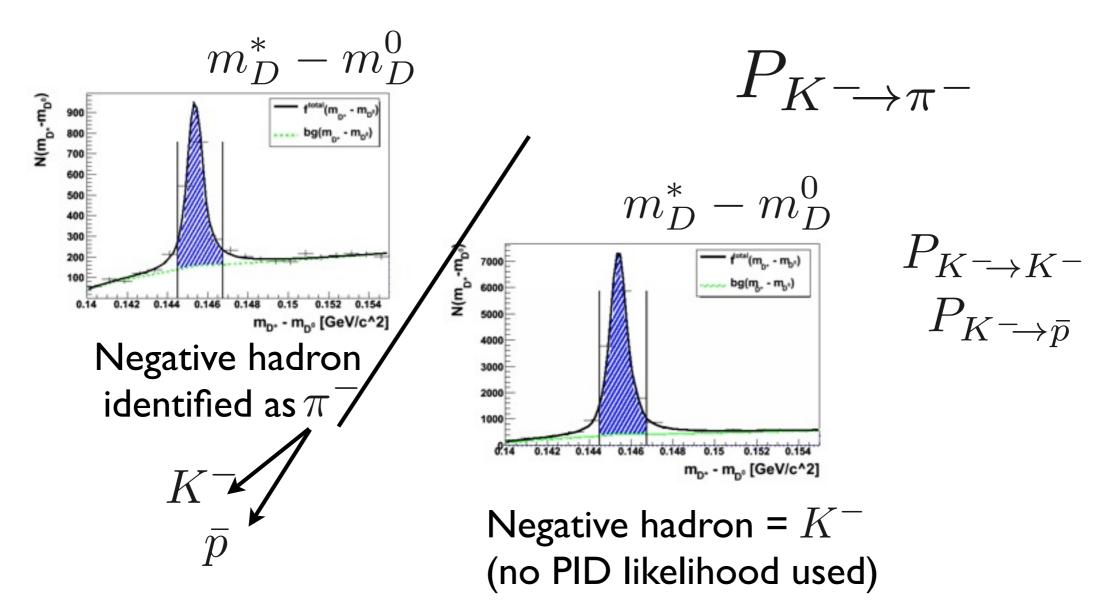




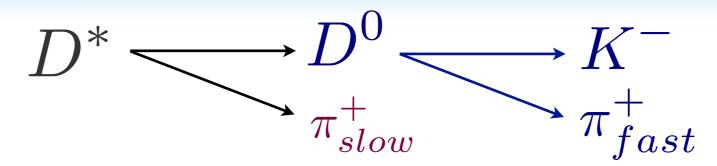
Negative hadron =  $K^-$  (no PID likelihood used)

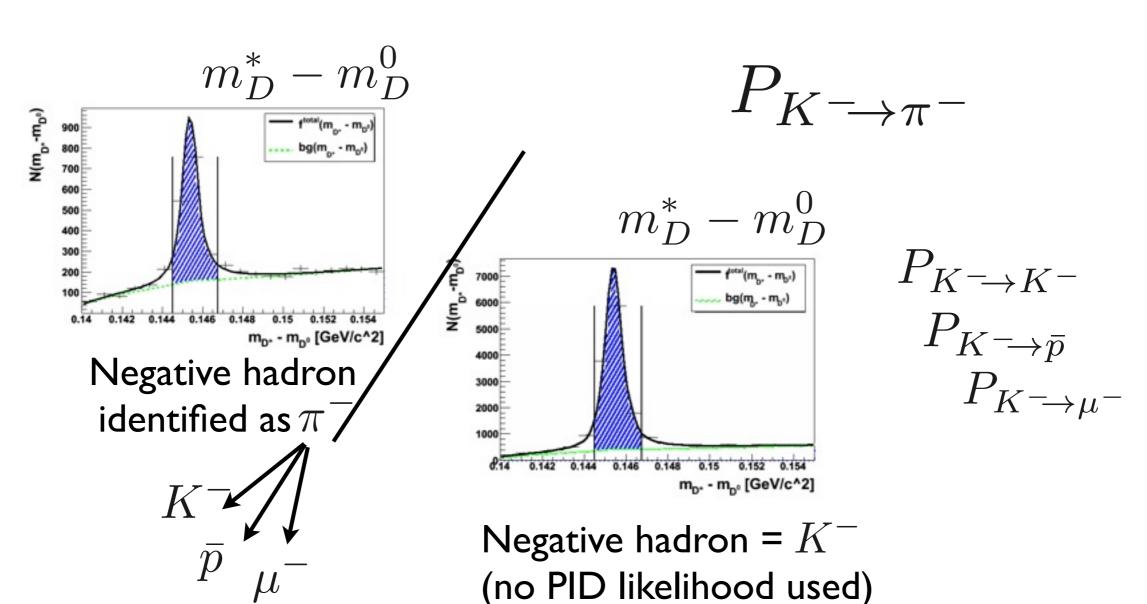




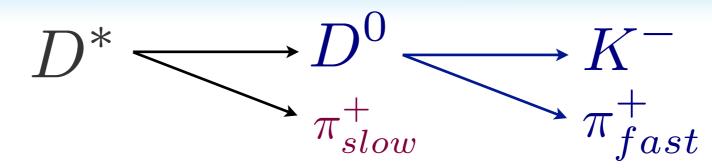


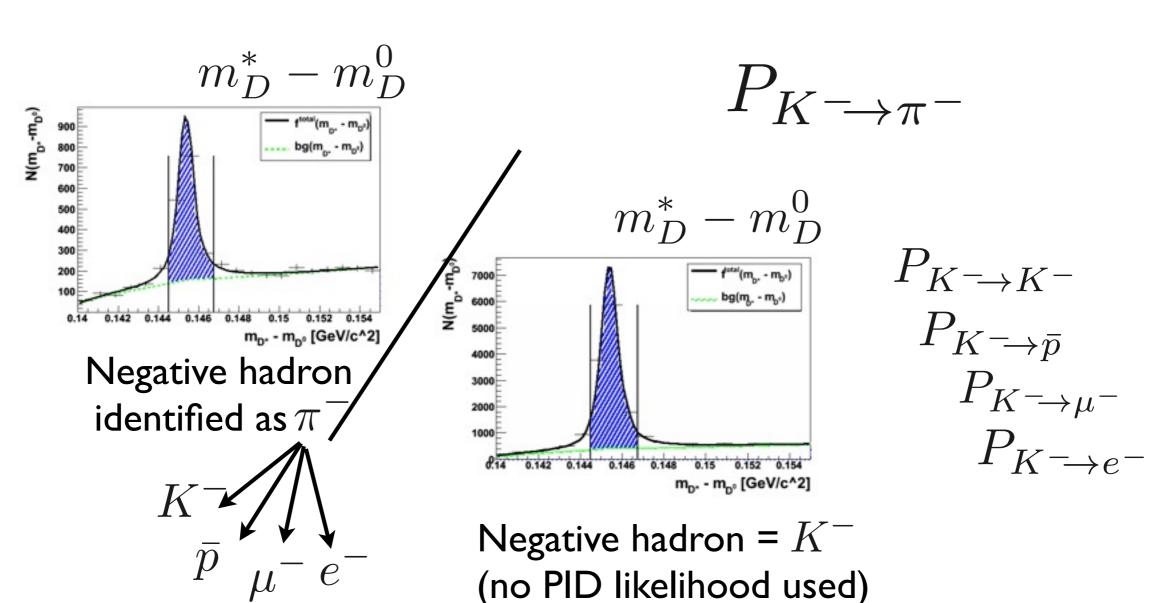








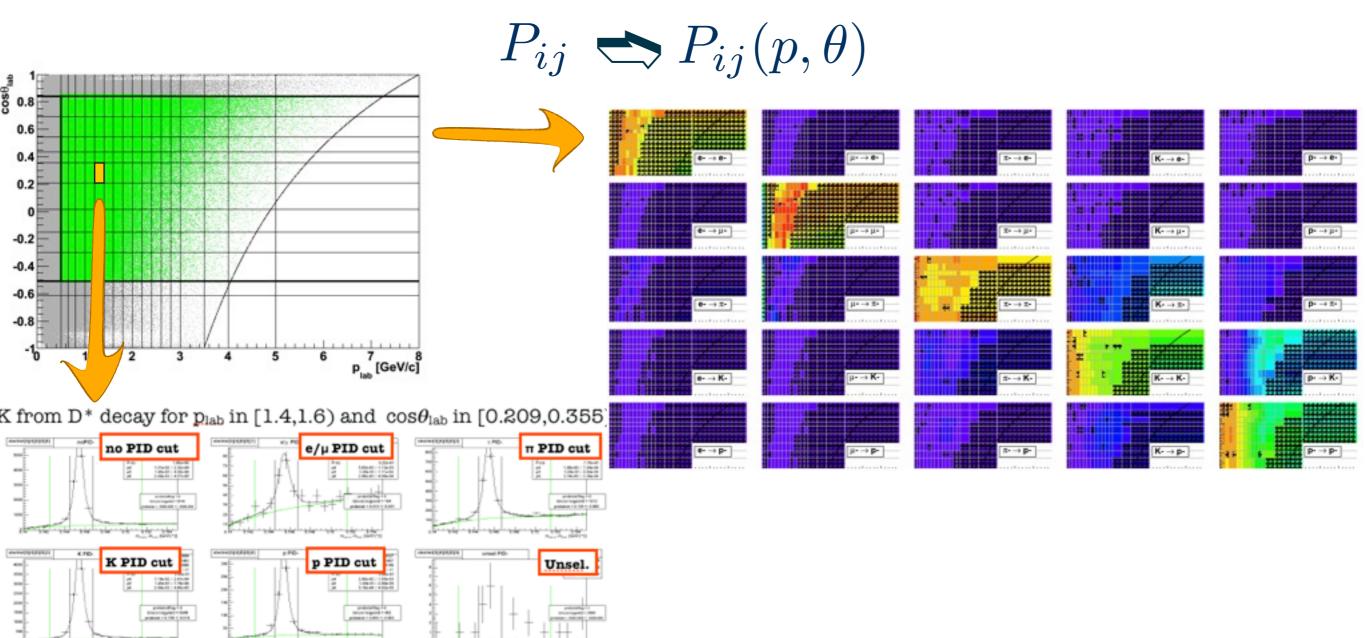




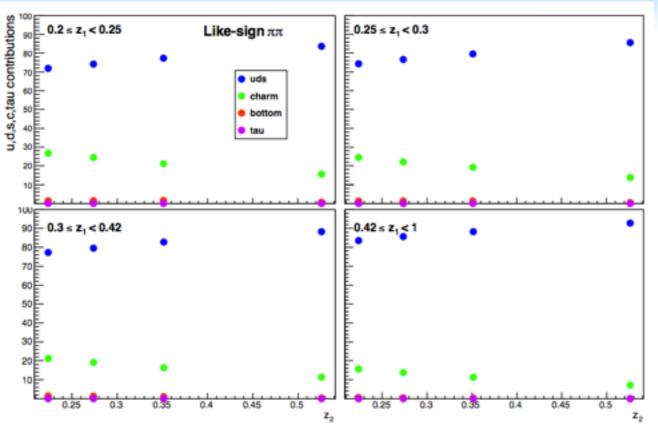


#### 2D correction

Detector performance depends on momentum and scattering angle!



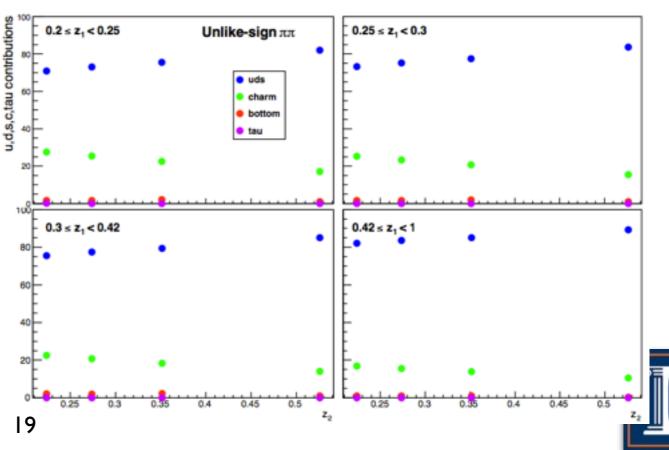


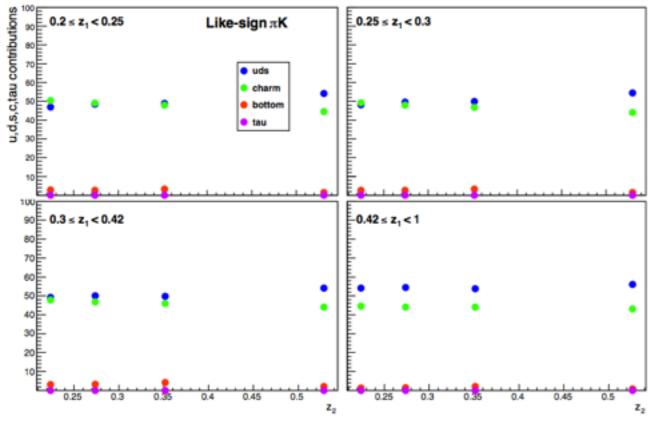


 $\pi\pi$  couples

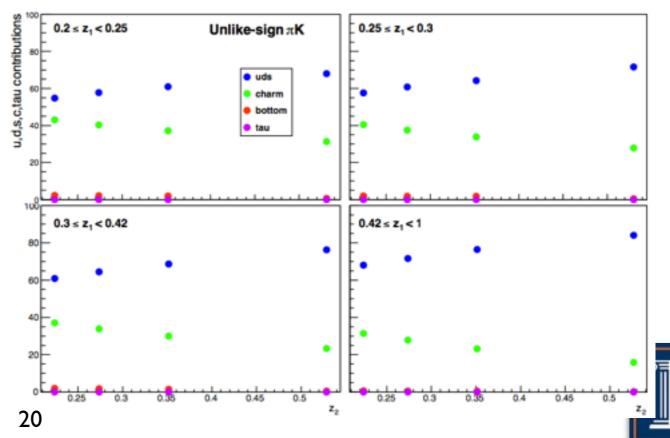
Published  $\pi\pi$  studied a charm enhanced data and found charm contribute only as dilution

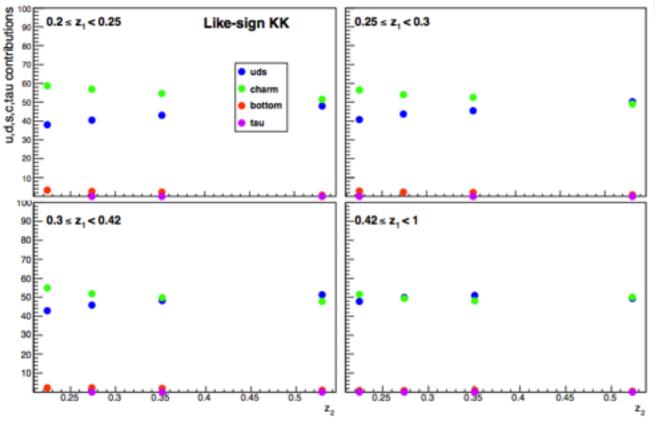
=> charm contribution corrected out



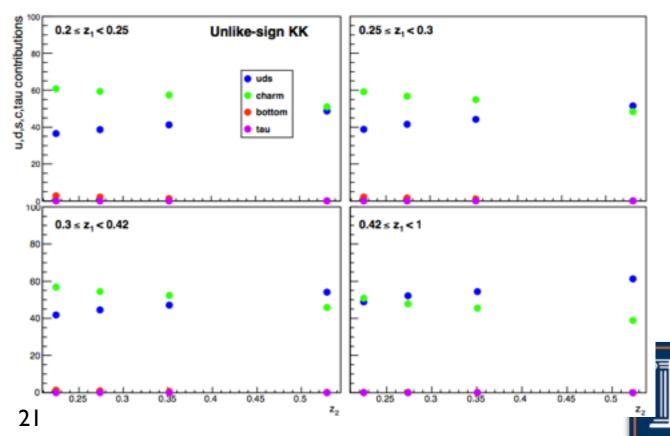


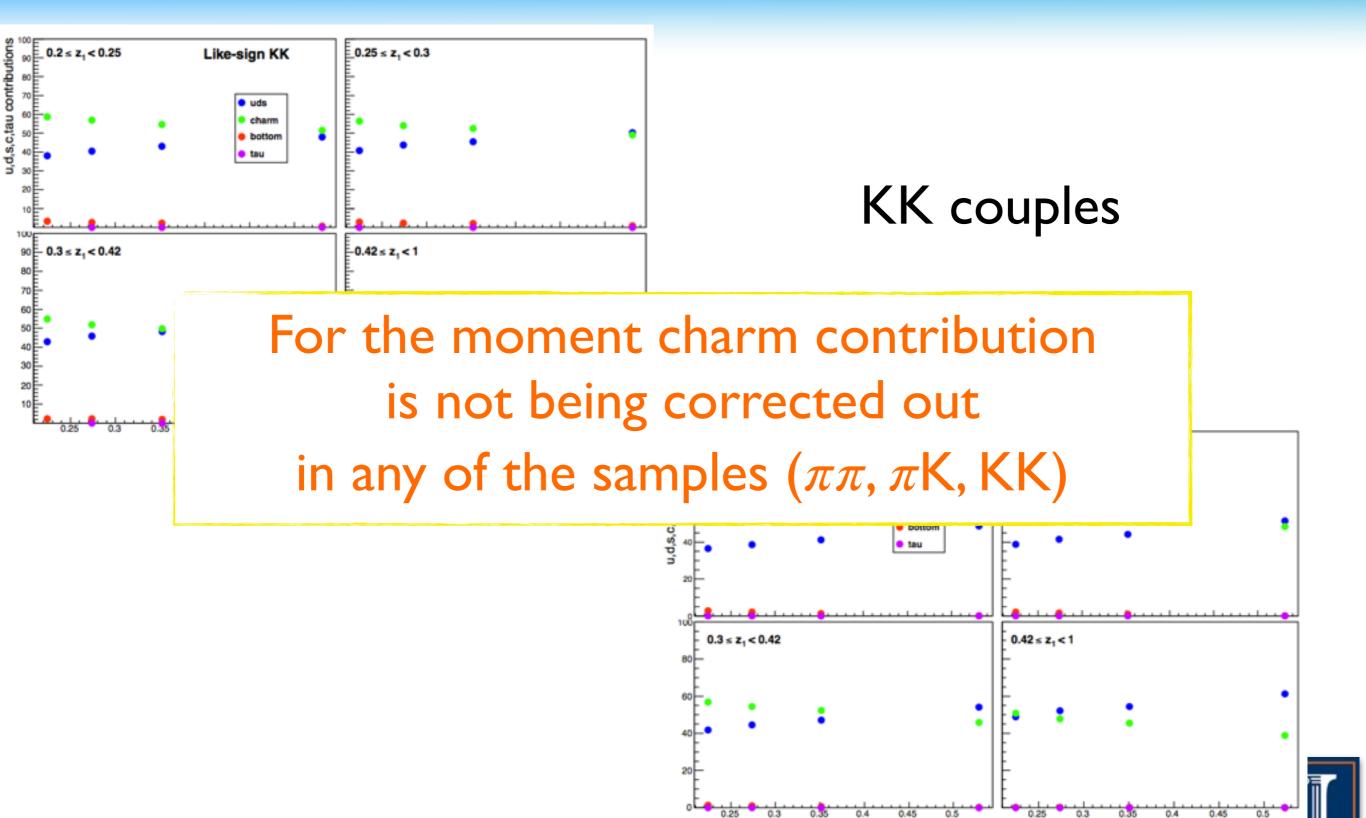
#### $\pi$ K couples





#### KK couples



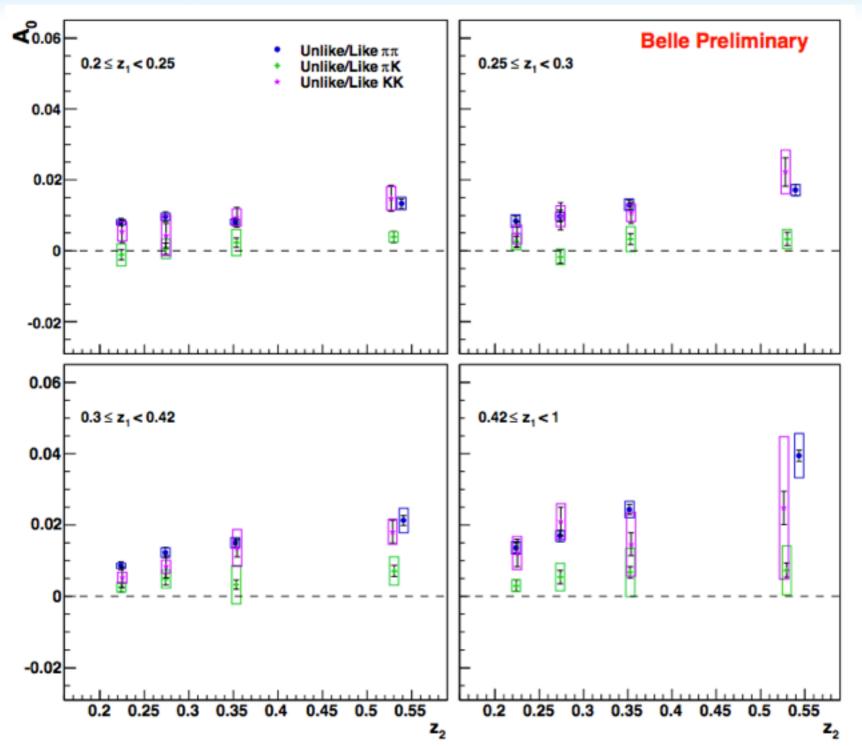


Francesca Giordano

## Collins asymmetries



# \$\phi\_0\$ asymmetries



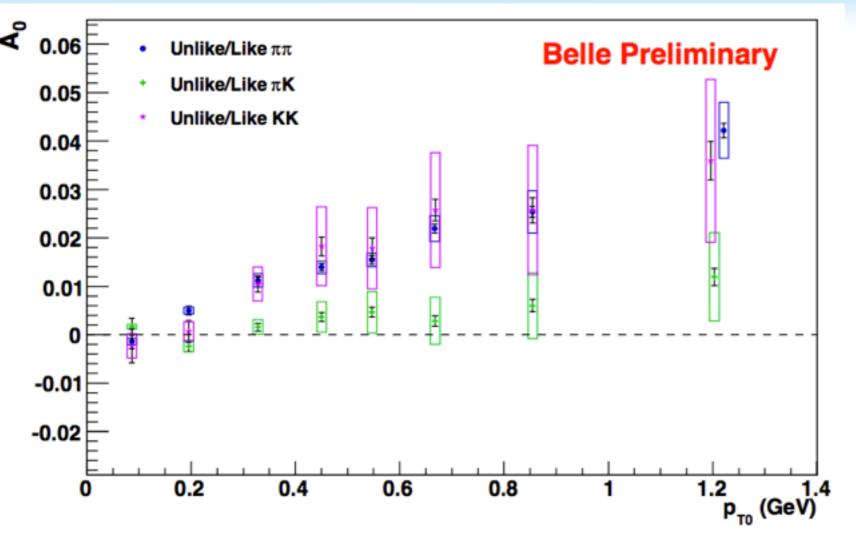
 $\pi\pi$  => non-zero asymmetries, increase with  $z_1, z_2$ 

 $\pi$ K => asymmetries compatible with zero

KK => non-zero asymmetries,
increase with z<sub>1</sub>,z<sub>2</sub>
similar size of pion-pion



# \$\phi\_0\$ asymmetries



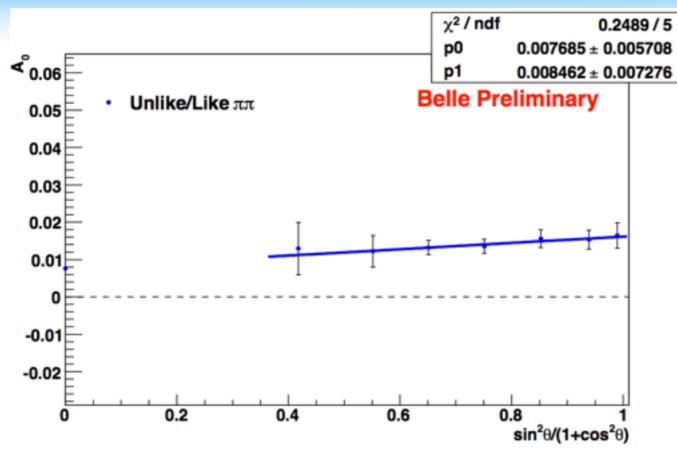
 $\pi\pi$  => non-zero asymmetries, increase with  $z_1, z_2$ 

 $\pi$ K => asymmetries compatible with zero

KK => non-zero asymmetries,
 increase with z<sub>1</sub>,z<sub>2</sub>
 similar size of pion-pion



#### $\pi\pi$ versus $\sin^2\theta/(1+\cos^2\theta)$



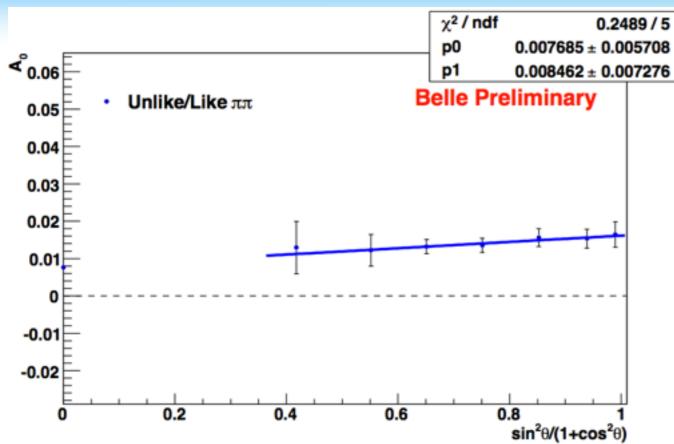
$$A_0 = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right]$$

linear in  $\sin^2 \Theta/(1+\cos^2 \Theta)$ , go to 0 for  $\sin^2 \Theta/(1+\cos^2 \Theta) \rightarrow 0$ 

fit form:  $p_0 + p_1 \sin^2 \Theta / (1 + \cos^2 \Theta)$ 



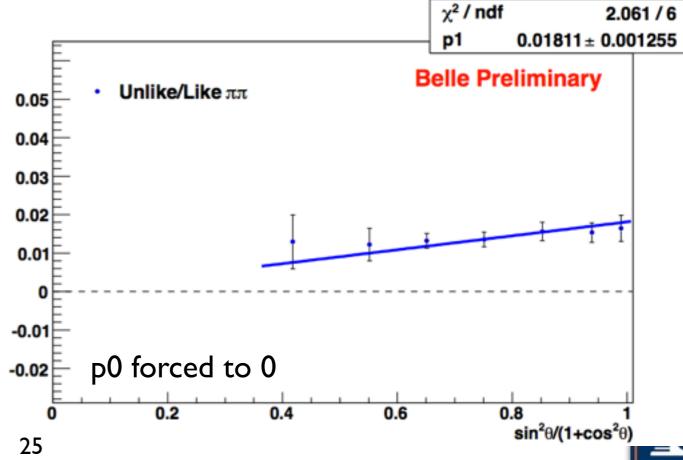
#### $\pi\pi$ versus $\sin^2\theta/(1+\cos^2\theta)$



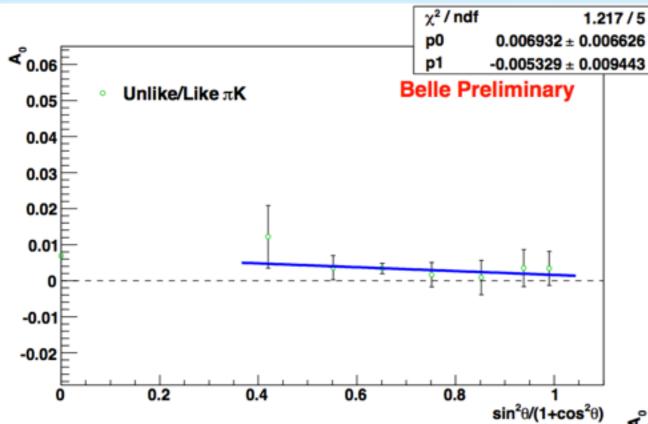
fit form: 
$$p_0 + p_1 \sin^2 \Theta / (1 + \cos^2 \Theta)$$

$$A_0 = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right]$$

linear in  $\sin^2 \Theta/(1+\cos^2 \Theta)$ , go to 0 for  $\sin^2 \Theta/(1+\cos^2 \Theta) \rightarrow 0$ 



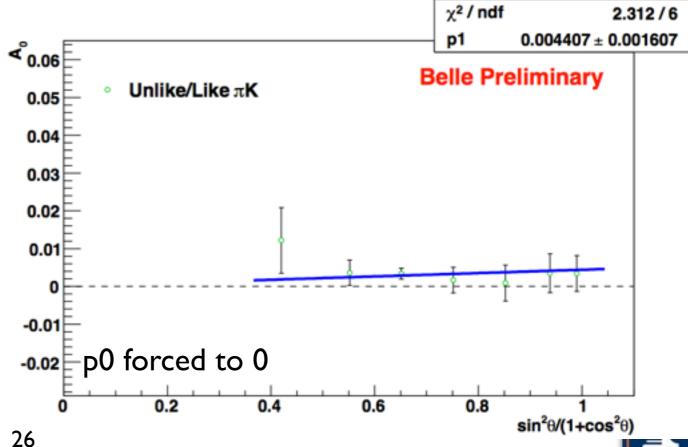
## $\pi K$ versus $\sin^2 \theta / (1 + \cos^2 \theta)$



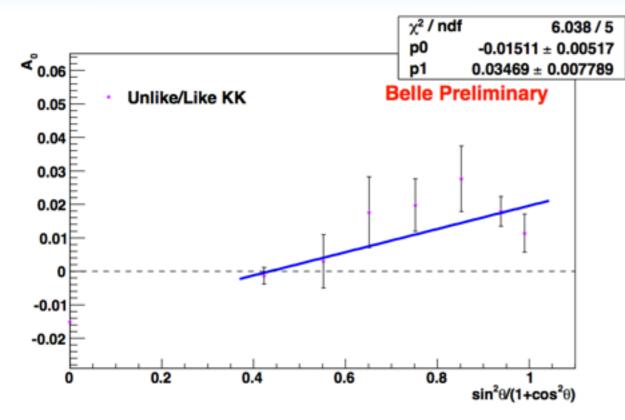
fit form: 
$$p_0 + p_1 \sin^2 \Theta / (1 + \cos^2 \Theta)$$

$$A_0 = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right]$$

linear in  $\sin^2 \Theta/(1+\cos^2 \Theta)$ , go to 0 for  $\sin^2 \Theta/(1+\cos^2 \Theta) \rightarrow 0$ 



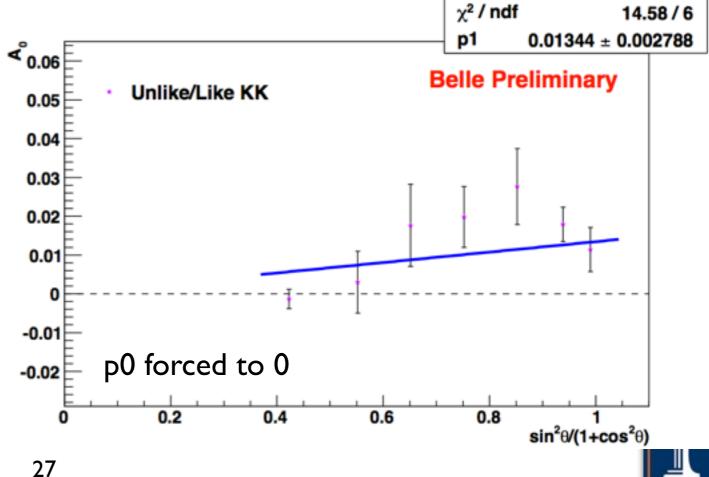
## KK versus $\sin^2\theta/(1+\cos^2\theta)$



fit form: 
$$p_0 + p_1 \sin^2 \Theta / (1 + \cos^2 \Theta)$$

$$A_0 = \frac{\sin^2 \theta}{1 + \cos^2 \theta} \mathcal{F} \left[ \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1^{\perp}(z_1) \bar{D}_1^{\perp}(z_2)} \right]$$

linear in  $\sin^2 \Theta/(1+\cos^2 \Theta)$ , go to 0 for  $\sin^2 \Theta/(1+\cos^2 \Theta) \rightarrow 0$ 



#### Fragmentation contributions

$$\begin{split} u,\,d &\to \pi \,(u \bar{d},\,\bar{u} d) \\ D^{fav} &= D^{\pi^+}_u = D^{\pi^-}_d = D^{\pi^-}_{\bar{u}} = D^{\pi^+}_{\bar{d}} \\ D^{dis} &= D^{\pi^-}_u = D^{\pi^+}_d = D^{\pi^+}_{\bar{u}} = D^{\pi^-}_{\bar{d}} \\ s &\to \pi \,(u \bar{d},\,\bar{u} d) \\ D^{dis}_{s \to \pi} &= D^{\pi^+}_s = D^{\pi^-}_s = D^{\pi^+}_{\bar{s}} = D^{\pi^-}_{\bar{s}} \\ u,\,d &\to K \,(u \bar{s},\,\bar{u} s) \\ D^{fav}_{u \to K} &= D^{K^+}_u = D^{K^-}_{\bar{u}} \\ D^{dis}_{u,d \to K} &= D^{K^-}_u = D^{K^+}_{\bar{u}} = D^{K^-}_{\bar{d}} = D^{K^-}_{\bar{d}} = D^{K^-}_{\bar{d}} \\ s &\to K \,(u \bar{s},\,\bar{u} s) \\ D^{fav}_{s \to K} &= D^{K^-}_s = D^{K^+}_{\bar{s}} \\ D^{dis}_{s \to K} &= D^{K^+}_s = D^{K^-}_{\bar{s}} \end{split}$$

In the end we are left with 7 possible fragmentation functions:

$$D^{fav}, D^{dis}, D^{dis}_{s \to \pi}, D^{fav}_{u \to K}, D^{dis}_{u,d \to K}, D^{fav}_{s \to K}, D^{dis}_{s \to K}$$



#### Fragmentation contributions

#### For pion-pion couples:

$$D^{\frac{U_{\pi\pi}}{L_{\pi\pi}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left( \frac{5H_1^{fav}H_2^{fav} + 5H_1^{dis}H_2^{dis} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{fav} + 5D_1^{dis}D_2^{dis} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} - \frac{5H_1^{fav}H_2^{dis} + 5H_1^{dis}H_2^{fav} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{dis} + 5D_1^{dis}D_2^{fav} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} \right)$$

#### For pion-Kaon couples:

$$D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \times$$

$$\left(\frac{4H_{1}^{fav}H_{2K}^{fav}+H_{1K}^{dis}(5H_{2}^{dis}+H_{2}^{fav})+H_{2K}^{dis}(5H_{1}^{dis}+H_{1}^{fav})+4H_{1K}^{fav}H_{2S}^{fav}+H_{1s\to\pi}^{dis}(H_{2s\to K}^{dis}+H_{2s\to K}^{fav})+H_{2s\to\pi}^{dis}(H_{1s\to K}^{fav}+H_{1s\to K}^{dis})}{4D_{1}^{fav}D_{2K}^{fav}+D_{1K}^{dis}(5D_{2}^{dis}+D_{2}^{fav})+D_{2K}^{dis}(5D_{1}^{dis}+D_{1}^{fav})+4D_{1K}^{fav}D_{2}^{fav}+D_{1s\to\pi}^{dis}(D_{2s\to K}^{dis}+D_{2s\to K}^{fav})+D_{2s\to\pi}^{dis}(D_{1s\to K}^{fav}+D_{1s\to K}^{dis})}{H_{2K}^{dis}(5H_{1}^{fav}+H_{1S}^{dis})+4H_{1K}^{dis}H_{2K}^{dis}+4H_{1K}^{dis}H_{2K}^{fav}+H_{1K}^{dis}(5H_{2}^{fav}+H_{2s\to K}^{dis})+H_{1s\to\pi}^{dis}(H_{2s\to K}^{fav}+H_{2s\to K}^{dis})+(H_{1s\to K}^{dis}+H_{1s\to K}^{fav})H_{2s\to\pi}^{dis}}\right)}{D_{2K}^{dis}(5D_{1}^{fav}+D_{1}^{dis})+4D_{1K}^{fav}D_{2K}^{dis}+4D_{1S}^{dis}D_{2K}^{fav}+D_{1K}^{dis}(5D_{2}^{fav}+D_{2s}^{dis})+D_{1s\to\pi}^{dis}(D_{2s\to K}^{fav}+D_{2s\to K}^{dis})+(D_{1s\to K}^{dis}+D_{1s\to K}^{fav})D_{2s\to\pi}^{dis}}\right)}$$

#### For Kaon-Kaon couples:

$$D^{\frac{UKK}{L_{KK}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2\theta}{1 + \cos^2\theta} \left( \frac{4H_{1K}^{fav}H_{2K}^{fav} + 6H_{1K}^{dis}H_{2K}^{dis} + H_{1s \to K}^{dis}H_{2s \to K}^{dis} + H_{1s \to K}^{fav}H_{2s \to K}^{fav}}{4D_{1K}^{fav}D_{2K}^{fav} + 6D_{1K}^{dis}D_{2K}^{dis} + D_{1s \to K}^{dis}D_{2s \to K}^{dis} + D_{1s \to K}^{fav}D_{2s \to K}^{fav}} - \frac{4H_{1K}^{fav}H_{2K}^{dis} + 4H_{1K}^{dis}H_{2K}^{fav} + 2H_{1K}^{dis}H_{2K}^{dis} + H_{1s \to K}^{dis}H_{2s \to K}^{fav} + H_{1s \to K}^{fav}H_{2s \to K}^{dis}}{4D_{1K}^{fav}D_{2K}^{dis} + 4D_{1K}^{dis}D_{2K}^{fav} + 2D_{1K}^{dis}D_{2K}^{dis} + D_{1s \to K}^{dis}D_{2s \to K}^{fav} + D_{1s \to K}^{fav}D_{2s \to K}^{dis}} \right)$$



#### Fragmentation contributions

#### For pion-pion couples:

$$D^{\frac{U_{\pi\pi}}{L_{\pi\pi}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left( \frac{5H_1^{fav}H_2^{fav} + 5H_1^{dis}H_2^{dis} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{fav} + 5D_1^{dis}D_2^{dis} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} - \frac{5H_1^{fav}H_2^{dis} + 5H_1^{dis}H_2^{fav} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{dis} + 5D_1^{dis}D_2^{fav} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} \right)$$

#### For pion-Kaon couples:

$$D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \times$$

$$\left(\frac{4H_{1}^{fav}H_{2K}^{fav}+H_{1K}^{dis}(5H_{2}^{dis}+H_{2}^{fav})+H_{2K}^{dis}(5H_{1}^{dis}+H_{1}^{fav})+4H_{1K}^{fav}H_{2S}^{fav}+H_{1s\to\pi}^{dis}(H_{2s\to K}^{dis}+H_{2s\to K}^{fav})+H_{2s\to\pi}^{dis}(H_{1s\to K}^{fav}+H_{1s\to K}^{dis})}{4D_{1}^{fav}D_{2K}^{fav}+D_{1K}^{dis}(5D_{2}^{dis}+D_{2K}^{fav})+D_{2K}^{dis}(5D_{1}^{dis}+D_{1}^{fav})+4D_{1K}^{fav}D_{2}^{fav}+D_{1s\to\pi}^{dis}(D_{2s\to K}^{dis}+D_{2s\to K}^{fav})+D_{2s\to\pi}^{dis}(D_{1s\to K}^{fav}+D_{1s\to K}^{dis})}{H_{2K}^{dis}(5D_{1}^{fav}+H_{1K}^{dis})+4H_{1K}^{dis}H_{2K}^{fav}+4H_{1K}^{dis}(5H_{2}^{fav}+H_{2s}^{dis})+H_{1s\to\pi}^{dis}(H_{2s\to K}^{fav}+H_{2s\to K}^{dis})+(H_{1s\to K}^{dis}+H_{1s\to K}^{fav})H_{2s\to\pi}^{dis}}\right)} \\ \frac{H_{2K}^{dis}(5D_{1}^{fav}+H_{1}^{dis})+4H_{1K}^{fav}H_{2S}^{dis}+4H_{1}^{dis}H_{2K}^{fav}+H_{1K}^{dis}(5H_{2}^{fav}+H_{2s}^{dis})+H_{1s\to\pi}^{dis}(H_{2s\to K}^{fav}+H_{2s\to K}^{dis})+(H_{1s\to K}^{dis}+H_{1s\to K}^{fav})H_{2s\to\pi}^{dis}}{D_{2K}^{dis}(5D_{1}^{fav}+D_{1}^{dis})+4D_{1K}^{fav}D_{2S}^{dis}+4D_{1S}^{dis}D_{2K}^{fav}+D_{1K}^{dis}(5D_{2}^{fav}+D_{2s\to K}^{dis})+D_{2s\to K}^{dis}(D_{2s\to K}^{fav}+D_{2s\to K}^{dis})+(D_{1s\to K}^{dis}+D_{1s\to K}^{fav})D_{2s\to\pi}^{dis}}\right)}$$

#### For Kaon-Kaon couples:

$$\begin{split} D^{\frac{UKK}{L_{KK}}} &\propto 1 \\ &+ \cos 2\phi_0 \frac{\sin^2\theta}{1 + \cos^2\theta} \bigg( \frac{4H_{1K}^{fav}H_{2K}^{fav} + 6H_{1K}^{dis}H_{2K}^{dis} + H_{1s \to K}^{dis}H_{2s \to K}^{dis} + H_{1s \to K}^{fav}H_{2s \to K}^{fav}}{4D_{1K}^{fav}D_{2K}^{fav} + 6D_{1K}^{dis}D_{2K}^{dis} + D_{1s \to K}^{dis}D_{2s \to K}^{dis} + D_{1s \to K}^{fav}D_{2s \to K}^{fav}} \\ &- \frac{4H_{1K}^{fav}H_{2K}^{dis} + 4H_{1K}^{dis}H_{2K}^{fav} + 2H_{1K}^{dis}H_{2K}^{dis} + H_{1s \to K}^{dis}H_{2s \to K}^{fav} + H_{1s \to K}^{fav}H_{2s \to K}^{dis}}{4D_{1K}^{fav}D_{2K}^{dis} + 4D_{1K}^{dis}D_{2K}^{fav} + 2D_{1K}^{dis}D_{2K}^{dis} + D_{1s \to K}^{dis}D_{2s \to K}^{fav} + D_{1s \to K}^{fav}D_{2s \to K}^{dis}} \bigg) \end{split}$$

Not so easy! A full phenomenological study needed!



# Summary & outlook

- $\phi_0$  asymmetries
  - present similar features for  $\pi\pi$  and KK couples
  - very small/compatible with zero for  $\pi K$  couples
  - for  $\pi\pi$  and  $\pi K$  the  $\sin^2\Theta/(1+\cos^2\Theta)$  dependence of asymmetries are not inconsistent with a linear dependence going to zero
  - KK show a more convoluted  $\sin^2 \Theta / (1 + \cos^2 \Theta)$  dependence



## Summary & outlook

- $\phi_0$  asymmetries
  - present similar features for  $\pi\pi$  and KK couples
  - very small/compatible with zero for  $\pi K$  couples
  - for  $\pi\pi$  and  $\pi K$  the  $\sin^2\Theta/(1+\cos^2\Theta)$  dependence of asymmetries are not inconsistent with a linear dependence going to zero
  - KK show a more convoluted  $\sin^2 \Theta / (1 + \cos^2 \Theta)$  dependence

- $\phi_{12}$  asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress



# Summary & outlook

- $\phi_0$  asymmetries
  - present similar features for  $\pi\pi$  and KK couples
  - very small/compatible with zero for  $\pi K$  couples
  - for  $\pi\pi$  and  $\pi K$  the  $\sin^2\Theta/(1+\cos^2\Theta)$  dependence of asymmetries are not inconsistent with a linear dependence going to zero
  - $\Theta$  KK show a more convoluted  $\sin^2\Theta/(1+\cos^2\Theta)$  dependence

- $\phi_{12}$  asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress

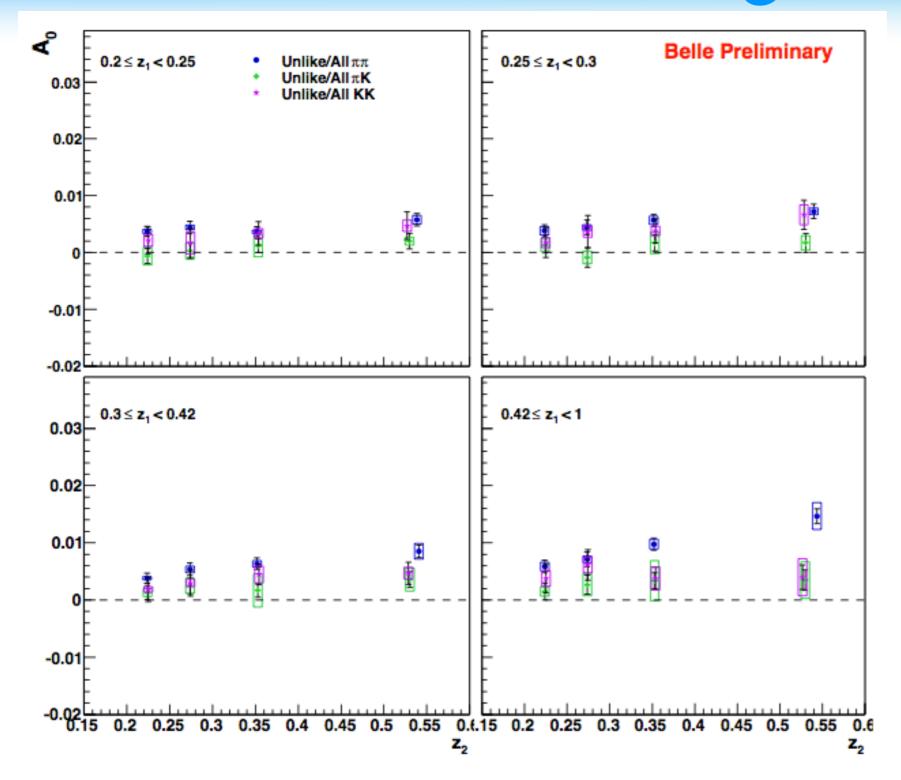
#### Stay tuned!



# Backups

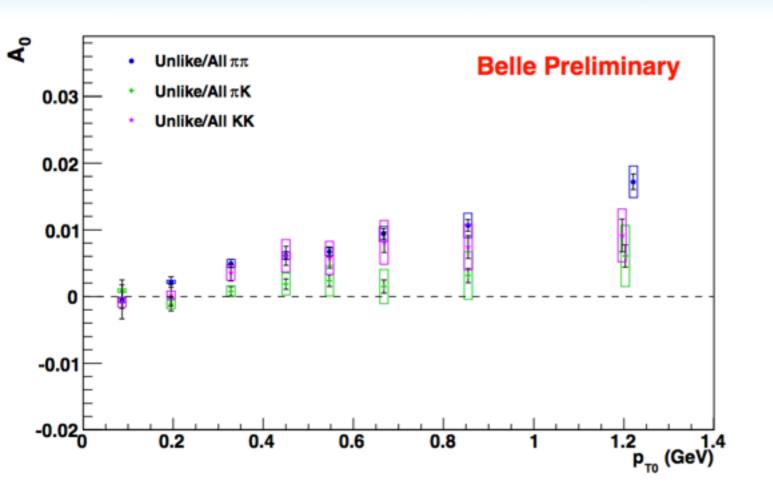


# \$\phi\_0\$ asymmetries





# \$\phi\_0\asymmetries\$





# More poasymmetries

