Recent HERMES results from inclusive and semi-inclusive hadron production with a transversely polarised target

Charlotte Van Hulse, on behalf of the HERMES collaboration University of the Basque Country - Spain

Transversity 2014, Chia, Sardinia 09-13 June, 2014

Outline

- Dihadron ($\pi \pi$ and KK) production in TMD semiinclusive DIS on a transversely polarized proton target
- Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons
- Transverse polarization of \wedge hyperons from quasi-real photoproduction on nuclei

Dihadron production in semi-inclusive DIS

Dihadron production

$$
\begin{array}{r}
\vec{R}=\frac{1}{2}\left(\vec{P}_{1}-\vec{P}_{2}\right) \\
\vec{P}_{h}=\vec{P}_{1}+\vec{P}_{2} \\
\vec{R}_{T}=\vec{R}-\frac{\vec{R} \cdot \vec{P}_{h}}{\left|\vec{P}_{h}\right|^{2}} \vec{P}_{h}
\end{array}
$$

$$
\phi_{R}=\operatorname{signum}\left[\left(\vec{n} \times \vec{R}_{T}\right) \cdot \vec{P}_{h}\right] \arccos \frac{\vec{n} \cdot \vec{R}_{T}}{|\vec{n}|\left|\vec{R}_{T}\right|},
$$

$x, y, z, P_{h \perp}$
with $\vec{n} \perp \vec{P}_{h}$ and $\left(\vec{P}_{h} \times \vec{n}\right) .(\vec{q} \times \vec{k})>0$
ϕ_{h}, ϕ_{R}
dihadron mass $M_{h h}$

New convention for (di)hadron

 fragmentation functions (*)- new convention for FFs:
 $\left|l_{1}, m_{1}>,\right| l_{2}, m_{2}>$ contained in partial-wave expansion
- exactly 2 FFs:
- unpolarised FF D_{1} with $\chi=\chi^{\prime}$
- polarised (Collins) FF H_{1}^{\perp} with $\chi \neq \chi$
(*) S. Gliske, "Transverse target moments of dihadron production in semi-inclusive DIS at HERMES", PhD thesis, University of Michigan, 2011.

Partial-wave expansion

- direct sum base $\mid l, m>$ rather than direct product base $\left|l_{1}, m_{1}\right\rangle, \mid l_{2}, m_{2}$

$$
\begin{aligned}
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} & =\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes\left(\frac{1}{2} \otimes \frac{1}{2}\right) \\
& =(1 \oplus 0) \otimes(1 \oplus 0) \\
& =2 \oplus \frac{1 \oplus 1 \oplus 1 \oplus}{1} \oplus \frac{0 \oplus 0}{0} \\
\text { experimentally } & 2 \oplus
\end{aligned}
$$

- partial wave

$$
\begin{aligned}
D_{1} & =\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell, m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)} D_{1}^{|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|\right), \\
H_{1}^{\perp} & =\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell, m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)} H_{1}^{\perp|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|\right)
\end{aligned}
$$

Cross section

$$
\begin{aligned}
d \sigma_{U T}= & \frac{\alpha^{2} M_{h} P_{h \perp}}{2 \pi x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left|\boldsymbol{S}_{\perp}\right| \\
& \times \sum_{\ell=0}^{2} \sum_{m=-\ell}^{\ell}\left\{A(x, y)\left[P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)\right)\right. \\
& \left.\times\left(F_{U T, T}^{P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}+\epsilon F_{U T, L}^{P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}\right)\right] \\
& +B(x, y)\left[P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right)}\right. \\
& \left.+P_{\ell, m} \sin \left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}\right] \\
+ & V(x, y)\left[P_{\ell, m} \sin \left(-m \phi_{h}+m \phi_{R}+\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left(-m \phi_{h}+m \phi_{R}+\phi_{S}\right)}\right. \\
& \left.\left.+P_{\ell, m} \sin \left((2-m) \phi_{h}+m \phi_{R}-\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left((2-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

Structure functions

at leading twist

$$
\begin{aligned}
& F_{U T, L}^{P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}= 0 \\
& F_{U T, T}^{F_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}=-\mathcal{I}\left[\frac{\left|\boldsymbol{p}_{T}\right|}{M} \cos \left((m+1) \phi_{h}-\phi_{p}-m \phi_{k}\right)\right. \\
&\left.\times\left(f_{1 T}^{\perp} D_{1}^{|\ell, m\rangle+}+\operatorname{signum}[m] g_{1 T} D_{1}^{|\ell, m\rangle-}\right)\right], \\
& \text { Sivers" } \\
& F_{U T}^{P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right)}=-\mathcal{I}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \cos \left((m-1) \phi_{h}-\phi_{p}-m \phi_{k}\right) h_{1} H_{1}^{\perp|\ell, m\rangle}\right], \\
& \text { "Collins" } \\
& F_{U T}^{P_{\ell, m} \sin \left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}= \mathcal{I}\left[\frac{\left|\boldsymbol{p}_{T}\right|^{2}\left|\boldsymbol{k}_{T}\right|}{M^{2} M_{h}} \cos \left((m-3) \phi_{h}+2 \phi_{p}-(m-1) \phi_{k}\right)\right. \\
&\left.\times h_{1 T}^{\perp} H_{1}^{\perp|\ell, m\rangle}\right] .
\end{aligned}
$$

usual IFF related to $H_{1}^{\perp \mid 1,1>}$
\vec{p}_{T}, ϕ_{p} struck quark \vec{k}_{T}, ϕ_{k} fragmenting quark

Results

- Collins moments for

$$
\pi^{+} \pi^{-}, \pi^{+} \pi^{0}, \pi^{-} \pi^{0}
$$

- Collins and Sivers moments for
$K^{+} K^{-}$in ϕ resonance region
- Collins, Sivers and pretzelocity for $\mid 0,0>$ moments for $K^{+} K^{-}$outside ϕ resonance region since $l>0, m>0$ are zero (as expected)

$1,1>$ Collins moments for $\pi \pi$

allows collinear access to transversity

$1,1>$ Collins moments for $\pi \pi$

$2, \pm 2>$ Collins moments for $\pi \pi$

$$
|2, \pm 2>=|1, \pm 1>| 1 \pm 1>
$$

$\mid 2,-2>$
consistent with zero
$\mid 2,+2>$

- no signal outside resonance region
- hint of negative signal for $\pi^{ \pm} \pi^{0}$ in $\rho^{ \pm}$region
no signal in ρ^{0} region

Collins moments for $K K$ in ϕ resonance region

sensitive to transversity s-quark distribution

no indication for different signal in and outside ϕ-resonance region

Sivers moments for $K K$ in ϕ

resonance region
sensitive to Sivers s-quark distribution

no indication for different signal in and outside ϕ-resonance region

Moments for K K outside ϕ

resonance region @ leading twist

- consistent with small positive value
- consistent with small positive value

Moments for K K outside ϕ

resonance region @ leading twist

- consistent with zero

Moments for K K outside ϕ

 resonance region @ sub-leading twist

- consistent with zero

Aut inclusive

Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

- various polarized pp scattering experiments consistently observe since 35 years large A_{N} asymmetries, with \sqrt{s} from 5 to 200 GeV

- not interpretable in leading-twist based on collinear factorisation

Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

- various polarized pp scattering experiments consistently observe since 35 years large A_{N} asymmetries, with \sqrt{s} from 5 to 200 GeV

- not interpretable in leading-twist based on collinear factorisation
- HERMES measurement of inclusive transverse target spin asymmetry $A_{U T}^{\sin (\psi)}$:

$$
d \sigma=d \sigma_{U U}\left[1+s_{\perp} A_{U T}^{\sin (\psi)} \sin (\psi)\right]
$$

- $A_{U T}^{\sin (\psi)}=\frac{\pi}{2} A_{N}$
- @ HERMES

$$
\sin (\psi) \sim \sin \left(\phi-\phi_{S}\right)
$$

Results: Xf dependence

$$
x_{F}=2 P_{L} / \sqrt{s}
$$

A. Airapetian et al, Phys. Lett. B 728 (2014) 183-190

π^{+}

- positive, increase linearly with X_{F}

π^{-}

- negative, decrease linearly with X_{F} x_{F} behavior of pions similar to what observed in hadron-hadron collisions

K^{+}
- positive, \sim constant with X_{F}
K^{-}
- compatible with zero, with small variations over X_{F}

Results: disentangle X_{F} and P_{T}

 dependence

- increase with P_{T} up to $P_{T} \approx 0.8 \mathrm{GeV}$
- P_{T} dependence independent of x_{F}
$\rightarrow x_{F}$ increase from P_{T} dependence

$$
\pi^{-}
$$

- small amplitudes, varyingly positive and negative with P_{T}
- decrease with increasing x_{F}

Results: disentangle x_{F} and P_{T}

dependence

- increase with P_{T} up to $P_{T} \approx 0.8 \mathrm{GeV}$
- increase with increasing x_{F}
K^{-}
- small amplitudes
- decrease with increasing X_{F}

Contribution of various sub-

 samples

3 sub samples:

- anti-tagged: no $e^{ \pm}$detected (mostly $Q^{2} \approx 0$)
- DIS with 0.2<z<0.7
- DIS with z>0.7
- anti-tagged results ~ overall results, majority of statistics
- 0.2<z<0.7 results: similar to Sivers amplitudes
- z>0.7 results: large asymmetries

the other inclusive SSA

- clearly positive for light target nuclei
- consistent with zero for heavy targets

the other inclusive SSA

$$
\xrightarrow[\zeta \equiv\left(E_{\Lambda}+p_{z \Lambda}\right) /\left(E_{e}+p_{e}\right)]{\zeta}
$$

- larger in backward direction w.r.t. incoming lepton
- consistent with X_{F} dependence of twist-3 calculation (opposite sign conventions for $X_{F}!$)

the other inclusive SSA

- larger in backward direction w.r.t. incoming lepton
- distinct pt dependences in forward and backward directions: rising with p_{T} in backward direction as in pp

Summary

- SIDIS dihadron moments (in new partial wave expansion) provide potentially rich information on various distribution and fragmentation functions
- inclusive Aut provides information that can contribute to understanding of A_{N} in pp data
- inclusive production of \wedge in ep can provide complementary information to pp data on the mechanism to generate \wedge polarization

