Recent HERMES results from inclusive and semi-inclusive hadron production with a transversely polarised target

Charlotte Van Hulse, on behalf of the HERMES collaboration University of the Basque Country - Spain

Transversity 2014, Chia, Sardinia 09-13 June, 2014

Outline

- · Dihadron ($\pi\pi$ and KK) production in TMD semiinclusive DIS on a transversely polarized proton target
- Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons
- Transverse polarization of Λ hyperons from quasi-real photoproduction on nuclei

Dihadron production in semi-inclusive DIS

Dihadron production

dihadrons h and h

guarks g and g

- new convention for FFs:
 - FFs entirely defined by quark spin χ , χ'
 - final-state polarisation of (di-)hadrons / $\chi = \frac{1}{q'\chi'}$ $|l_1, m_1 >, |l_2, m_2 > \text{contained in partial-wave expansion}$
- exactly 2 FFs:
 - · unpolarised FF D_1 with $\chi = \chi'$
 - polarised (Collins) FF H_1^{\perp} with $\chi \neq \chi$

(*) S. Gliske, "Transverse target moments of dihadron production in semi-inclusive DIS at HERMES", PhD thesis, University of Michigan, 2011. 5

Partial-wave expansion

 $\cdot \ \mbox{direct sum base} \mid l,m > \mbox{rather than}$ direct product base $|l_1, m_1 \rangle, |l_2, m_2$

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \left(\frac{1}{2} \otimes \frac{1}{2}\right)$$
$$= (1 \oplus 0) \otimes (1 \oplus 0),$$
$$= 2 \oplus \underline{1} \oplus \underline{1} \oplus \underline{1} \oplus \underline{0} \oplus \underline{0}.$$
experimentally $2 \oplus \underline{1} \oplus \underline{1} \oplus \underline{0} \oplus \underline{0}.$

$$|\ell_1, m_1\rangle$$
 $h' |\ell_2, m_2\rangle$
 $q \chi$ $q' \chi'$

h

2 🕀 1 experimentally \oplus

partial wave

$$D_{1} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) e^{im(\phi_{R}-\phi_{k})} D_{1}^{|\ell,m\rangle}(z, M_{h}, |\boldsymbol{k}_{T}|),$$

$$H_{1}^{\perp} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) e^{im(\phi_{R}-\phi_{k})} H_{1}^{\perp|\ell,m\rangle}(z, M_{h}, |\boldsymbol{k}_{T}|)$$

$$\begin{aligned} d\sigma_{UT} &= \frac{\alpha^2 M_h P_{h\perp}}{2\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) |\mathbf{S}_{\perp}| \\ &\times \sum_{\ell=0}^2 \sum_{m=-\ell}^{\ell} \left\{ A(x, y) \left[P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)) \right. \\ &\times \left(F_{UT,T}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)} + \epsilon F_{UT,L}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)} \right) \right] \\ &+ B(x, y) \left[P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) F_{UT}^{P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S)} \right. \\ &+ P_{\ell,m} \sin((3-m)\phi_h + m\phi_R - \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_R - \phi_S))} \right] \\ &+ V(x, y) \left[P_{\ell,m} \sin((-m\phi_h + m\phi_R + \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_R - \phi_S))} \right] \\ &+ P_{\ell,m} \sin((2-m)\phi_h + m\phi_R - \phi_S) F_{UT}^{P_{\ell,m} \sin((2-m)\phi_h + m\phi_R - \phi_S)} \right] \right\}. \end{aligned}$$

and analogously for $d\sigma_{UU}, d\sigma_{UL}, d\sigma_{LU}, d\sigma_{LL}, d\sigma_{LT}$

Structure functions at leading twist

$$\begin{split} F_{UT,L}^{P_{\ell,m}\sin((m+1)\phi_h - m\phi_R - \phi_S)} &= 0 \\ F_{UT,T}^{P_{\ell,m}\sin((m+1)\phi_h - m\phi_R - \phi_S)} &= -\mathcal{I}\bigg[\frac{|\boldsymbol{p}_T|}{M}\cos\left((m+1)\phi_h - \phi_p - m\phi_k\right) \\ & \text{"Sivers"} \\ & \times \left(f_{1T}^{\perp}D_1^{|\ell,m\rangle +} + \operatorname{signum}[m]g_{1T}D_1^{|\ell,m\rangle -}\right)\bigg], \\ F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h + m\phi_R + \phi_S)} &= -\mathcal{I}\bigg[\frac{|\boldsymbol{k}_T|}{M_h}\cos\left((m-1)\phi_h - \phi_p - m\phi_k\right)h_1H_1^{\perp|\ell,m\rangle}\bigg], \end{split}$$

$$F_{UT}^{P_{\ell,m}\sin((3-m)\phi_h+m\phi_R-\phi_S)} = \mathcal{I}\left[\frac{|\boldsymbol{p}_T|^2|\boldsymbol{\kappa}_T|}{M^2M_h}\cos\left((m-3)\phi_h+2\phi_p-(m-1)\phi_k\right)\right] \times h_{1T}^{\perp}H_1^{\perp|\ell,m\rangle}.$$

usual IFF related to $H_1^{\perp|1,1>}$

 \vec{p}_T, ϕ_p struck quark \vec{k}_T, ϕ_k fragmenting quark

Results

- Collins moments for + + 0 = 0
 - $\pi^+\pi^-, \pi^+\pi^0, \pi^-\pi^0$
- Collins and Sivers moments for K^+K^- in ϕ resonance region
- Collins, Sivers and pretzelocity for |0,0> moments for K^+K^- outside ϕ resonance region since l>0,m>0 are zero (as expected)

|1, 1> Collins moments for $\pi\pi$

allows collinear access to transversity

|1, 1 > Collins moments for $\pi\pi$

11

$|2,\pm 2>$ Collins moments for $\pi\pi$ $|2,\pm 2>=|1,\pm 1>|1\pm 1>$

Collins moments for $K K in \phi$ resonance region

sensitive to transversity s-quark distribution

no indication for different signal in and outside ϕ -resonance region

Sivers moments for $K^{+}K^{-}$ in ϕ resonance region

sensitive to Sivers s-quark distribution

no indication for different signal in and outside ϕ -resonance region

Moments for K K outside ϕ resonance region @ leading twist

consistent with small positive value

consistent with small positive value

Moments for K K outside ϕ resonance region @ leading twist

consistent with zero

Moments for K K outside ϕ resonance region @ sub-leading twist

consistent with zero

Aut inclusive

Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

• various polarized pp scattering experiments consistently observe since 35 years large A asymmetries, with \sqrt{s} from 5 to 200 GeV

not interpretable in leading-twist based on collinear factorisation

Transverse target single-spin asymmetry in inclusive electroproduction of pions and kaons

• various polarized pp scattering experiments consistently observe since 35 years large A asymmetries, with \sqrt{s} from 5 to 200 GeV

- not interpretable in leading-twist based on collinear factorisation
- HERMES measurement of inclusive transverse target spin asymmetry $A_{UT}^{\sin(\psi)}$:

$$d\sigma = d\sigma_{UU} [1 + s_{\perp} A_{UT}^{\sin(\psi)} \sin(\psi)]$$

• $A_{UT}^{\sin(\psi)} = \frac{\pi}{2}A_N$

Left

• **@HERMES** $\sin(\psi) \sim \sin(\phi - \phi_S)$

Results: xF dependence

 π^+

 $x_F = 2P_L/\sqrt{s}$

 compatible with zero, with small variations over x_F

Results: disentangle x_F and P_T dependence

 π^{\dashv}

- increase with P_{T} up to $P_{T} \approx 0.8 \text{ GeV}$
- P_{T} dependence independent of x_{F}
- $\rightarrow x_{F}$ increase from P_{T} dependence

 π

small amplitudes,

varyingly positive and negative with $\mathrm{P}_{_{\mathrm{T}}}$

• decrease with increasing $x_{_{\rm F}}$

Results: disentangle x_F and P_T dependence

- small amplitudes
- decrease with increasing $x_{_{\rm F}}$

Contribution of various subsamples

3 sub samples:

- anti-tagged: no e[±] detected (mostly Q² ≈0)
- DIS with 0.2<z<0.7
- DIS with z>0.7
- anti-tagged results ~ overall results, majority of statistics
- 0.2<z<0.7 results: similar to Sivers amplitudes
- z>0.7 results: large asymmetries

Transverse A polarization in inclusive measurement

the other inclusive SSA

atomic-mass number A

- clearly positive for light target nuclei
- consistent with zero for heavy targets

the other inclusive SSA

larger in backward direction w.r.t. incoming lepton

• consistent with x_F dependence of twist-3 calculation (opposite sign conventions for x_F !)

the other inclusive SSA

larger in backward direction w.r.t. incoming lepton

• distinct p_T dependences in forward and backward directions: rising with p_T in backward direction as in pp

Summary

- SIDIS dihadron moments (in new partial wave expansion) provide potentially rich information on various distribution and fragmentation functions
- \cdot inclusive A_{UT} provides information that can contribute to understanding of A_N in pp data
- · inclusive production of Λ in ep can provide complementary information to pp data on the mechanism to generate Λ polarization