Transversity 2014

Fourth International Workshop on Transverse Polarization Phenomena in Hard Processes

9-13 June 2014, Chia, Cagliari

Measurement of Collins Asymmetries in inclusive production of pion pairs @ BaBar

Isabella Garzia On behalf of the BaBar Collaboration INFN-Sezione di Ferrara University of Ferrara

Outline

INTRODUCTION

- Theoretical framework
 - Collins fragmentation functions
 - Reference frames: RF12 and RF0
- PEP-II and the BaBar detector at SLAC

ANALYSIS OVERVIEW

- Analysis method
- Extraction of the asymmetry for light quarks
- Asymmetry corrections and studies of systematic uncertainty

RESULTS

• Asymmetries *vs.* pion fractional energies, pion transverse momentum, analysis axis polar angle, and 4-D results

PLANS and CONCLUSIONS

Collins Fragmentation Function

Fragmentation Functions (FFs) \rightarrow dimensionless and universal functions

- \rightarrow non-perturbative information
- \rightarrow describe the final state particles in hard processes
- \rightarrow dependence on z=2E_h/ \sqrt{s} , P₁, and s_a

"Standard" unpolarized FF

 $D_1^{q\uparrow}(z, \mathbf{P}_{\perp}; s_q) = D_1^q(z, P_{\perp}) + \frac{P_{\perp}}{zM_h} H_1^{\perp q}(z, P_{\perp}) \,\mathbf{s}_q \cdot (\mathbf{k}_q \times \mathbf{P}_{\perp})$

Definition of the azimuthal angle ϕ in the case of a quark of momentum k and spin

S_q fragments into a spin-0 hadron of momentum \mathbf{P}_{h} with transverse component $P_{h^{\perp}}$ transverse to **k**

- could arise from a **spin-orbit** coupling
- leads to an azimuthal modulation of hadrons around the quark momentum **k** ==> **Collins asymmetry**
- H_1^{\perp} is the **polarized** fragmentation function or **Collins FF** \rightarrow it describes the fragmentation of a transversely polarized
- quark into a spinless (or unpolarized) hadron h • J. C. Collins, Nucl. Phys. B396, 161 (1993)

Collins effect

SIDIS

- First observed in Semi-Inclusive DIS (SIDIS)
 - unpolarized lepton beam (1) off transversely
 - polarized target (N) $(lN \rightarrow l^2 \pi X)$
 - non-zero Collins effect
- $\sigma \propto \sin(\varphi_h + \varphi_s) h_1(x_B) \otimes \mathbf{H}_1^{\perp}(z_1)$
 - two chiral-odd functions
 - azimuthal single spin asymmetry

e⁺e⁻ annihilation

- In a given event, the q and q̄ spin directions are unknown, but they must be parallel, with a polarization component transverse to the q direction ∝ sin²θ
- exploit this correlation by using hadrons in opposite jets
- the observed asymmetry is proportional to the product of two Collins functions:

 $e^+e^- \rightarrow q\overline{q} \rightarrow \pi_1 \pi_2 X \quad (q=u, d, s) = > \sigma \propto \cos(\phi_i) H_1^{\perp}(z_1) \otimes H_1^{\perp}(z_2),$

Extraction of Collins functions from data

TRANSVERSITY 2014

Reference Frames

RF0 or Second hadron frame

$$\frac{d\sigma(e^+e^- \to \pi_1\pi_2X)}{dz_1dz_2d^2\mathbf{q}_Td\cos(\theta_2)d\phi_0} = \frac{3\alpha^2}{s} \frac{z_1^2 z_2^2}{4} \times \left\{ (1 + \cos^2\theta_2) \mathcal{F}(D_1(z_1)\overline{D}_1(z_2)) + \sin^2\theta_2 \cos(2\phi_0) \\ \times \mathcal{F}\left[(2\hat{\mathbf{h}} \cdot \mathbf{k}_T \ \hat{\mathbf{h}} \cdot \mathbf{p}_T - \mathbf{k}_T \cdot \mathbf{p}_T) \frac{H_1^{\perp}(z_1)\overline{H}_1^{\perp}(z_2)}{M_{\pi}^2} \right] \right\}$$

$$\cdot \text{ Alternatively, just use one track in a pair}$$

$$\cdot \text{ Very clean experimentally (no thrust axis), less theoretically}$$

$$\cdot \text{ Gives quark direction for higher pion momentum}$$

$$[See NPB 806, 23 (2009)]$$

$$TRANSVERSITY 2014$$

Collins effect in e+e- annihilation

Different combination of charged pions: $e^+e^- \rightarrow q\overline{q} \rightarrow \pi_1^{\pm}\pi_2^{\pm(\mp)} X$ (q=u, d, s) \Rightarrow sensitivity to **favored** or **unfavored** FFs

• **favored** fragmentation process: i.e. $U \rightarrow \pi^+$, $d \rightarrow \pi^-$, describes the fragmentation of a quark of flavor q into a hadron with a valence quark of the same flavor

• **disfavored** for $d \rightarrow \pi^+$, $u \rightarrow \pi^-$, and $s \rightarrow \pi^{\pm}$

$$D^{\text{fav}}(z) = D_u^{\pi^+}(z) = D_d^{\pi^-}(z)$$
$$\overline{D}^{\text{fav}}(z) = D_{\overline{u}}^{\pi^-}(z) = D_{\overline{d}}^{\pi^+}(z)$$
$$D^{\text{dis}}(z) = D_u^{\pi^-}(z) = D_d^{\pi^+}(z) = D_s^{\pi^\pm}(z)$$
$$D^{\text{dis}}(z) = D_u^{\pi^-}(z) = D_d^{\pi^+}(z) = D_s^{\pi^\pm}(z)$$

Collins effect in e+e- annihilation

The cross section can be written in terms of favored and disfavored fragmentation functions:

$$N^{U}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\mp}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{7}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

$$N^{L}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\pm}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) + \frac{5}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{2}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

$$N^{C}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi\pi X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} = N^{U}(\phi) + N^{L}(\phi) \propto \frac{5}{9}[D^{\mathrm{fav}}(z_{1}) + D^{\mathrm{dis}}(z_{1})][\overline{D}^{\mathrm{fav}}(z_{2}) + \overline{D}^{\mathrm{dis}}(z_{2})] + \frac{4}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

TRANSVERSITY 2014

PEP-II and the BaBar Detector at SLAC

Analysis strategy

- The analysis is performed using an integrated luminosity of ∠~470 fb⁻¹ of data collected at the Y(4S) and off-resonance
- 2) We study the Collins asymmetry in two different reference frames: RF12 and RF0 (Nucl.Phys. B 806, 23 (2009), PRD 78, 032011 (2008))
- Selection of multi-hadronic events
- Selection of pions in opposite jets according to the thrust axis
 - the thrust axis in the $e^+ e^-$ center of mass frame is assumed to be the $q\overline{q}$ direction
 - thrust axis direction chosen at random to avoid forward/backward detector asymmetry effect
- Measurement of the azimuthal angles ϕ_i in both reference frames as a function of:
 - pion fractional energies $(z_1,z_2) ==> (6x6)$ bins
 - pion transverse momenta: $(p_{t1},p_{t2}) = (4x4)$ bins; $p_{t0} = 9$ bins
 - $-\sin^2\theta_{(th,2)}/(1+\cos^2\theta_{(th,2)}) = > 15 \text{ bins}$
 - 4-D analysis ==> $(z_1, z_2) x (p_{t1}, p_{t2}) ==> (4x4) x (3x3)$
- Fit to the azimuthal distributions
- Estimation and subtraction of backgrounds
- Study of the systematic effects

I. Garzia

Event and track selection

→ Opening angle ($\theta_{pi-thrust}$) of the pions with respect to the thrust axis < 45°

 \rightarrow Q_t<3.5 GeV, where Q_t is the transverse momentum of the virtual photon in the pions c.m.

Raw asymmetry

12

- make the normalized distributions of $\phi_{\alpha} = \phi_1 + \phi_2$ or

• The MC generator (JETSET) does not include the

Collins effect, but it shows a strong cosine modulation

• Data shows a large difference between U and L distributions, that can be ascribed to the Collins effect

Collins asymmetry

 $2\phi_0 (\alpha = 12, 0)$

- consider all the U and L pion pairs

- mostly due to acceptance of the detector

- depends strongly on the thrust axis polar angle

Double Ratio

Acceptance effects can be reduced by performing the ratio of Unlike/Like sign pion pairs (or Unlike/Charged)

- small deviation from zero still present (« asymmetry measured in data sample)

MC: small deviation from a flat distribution **DATA**: cosine modulation clearly visible

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha})\rangle}{N^{L(C)}(\phi_{\alpha})/\langle N^{L(C)}(\phi_{\alpha})\rangle} \to B_{\alpha}^{UL(UC)} + A_{\alpha}^{UL,(UC)} \cdot \cos(\phi_{\alpha})$$

A: contains only the Collins effect and higher order radiative effects

Extraction of uds Collins asymmetry

Fraction of $\pi\pi$ due to the ith bkg

process

- In each bin, the data sample includes pairs from
 - signal uds events
 - $B\overline{B}$ events (small, mostly at low z)
 - \overline{CC} events (important at low/medium z)
 - $\tau^+\tau^-$ events (important at high z)
- We must calculate these quantities:
 - F_i using MC sample; we assign MC-data difference in each bin as systematic error $A^{B\overline{B}}$ must be zero; we set $A^{B\overline{B}} = 0$
 - A^{τ} small in simulation; checked in data; we set $A^{\tau} = 0$
- Charm background contribution is about 30% on average
 - Both fragmentation processes and weak decays can introduce azimuthal asymmetries
 - We used a $D^{*\pm}$ -enhanced control sample to estimate its effect

$$A_{\alpha}^{\text{meas}} = (1 - F_c - F_B - F_{\tau}) \cdot A_{\alpha} + F_c \cdot A_{\alpha}^c$$
$$A_{\alpha}^{D^*} = (1 - f_c - f_B) \cdot A_{\alpha} + f_c \cdot A_{\alpha}^c.$$

14

True asymmetry

Asymmetry dilution

The experimental method assumes the thrust axis as $q\overline{q}$ direction: this is only a rough approximation

RF12: <u>large smearing</u> since the azimuthal angles φ_1 and φ_2 are calculated with respect to the thrust axis; additional dilution due to very energetic tracks close to the thrust axis. **RF0**: the azimuthal angle φ_0 is calculated with respect to the second hadron momenta \rightarrow small smearing due to PID and

tracking resolution.

TRANSVERSITY 2014

Corrections and Systematics summary

16

We correct the asymmetries for:

- Background contributions
- MC bias
- **Dilution effects** (RF12 only)

A large number of systematic checks were done. The main contributions come from:

- **Particle identification (PID)**: few percent change in the asymmetry by changing the PID cuts
- Fit procedure: different angular bin size leads to about 1% of deviation from standard bins
- **MC uncertainties:** we used different track selection requirements
- Dilution method
- Pion transverse momentum resolution (only for the asymmetry vs. (pt1,pt2)). The pt resolution is about 100 MeV on average ==> 10% effect on asymmetries for all bins, except for the lowest energies (30%)

I. Garzia

Results I: asymmetry vs. (z₁,z₂)

Statistical errors shown as bars; systematic errors shown as bands

Significant nonzero A^{UL} and A^{UC} in all bins

- strong dependence on (z_1, z_2) : 1-39% in RF12 and 1-11% in RF0
- A^{UC} < A^{UL} as expected; complementary information about the favored and disfavored fragmentation processes (PRD 73, 094025 (2006))
- consistent with $z_1 \Leftrightarrow z_2$ symmetry

Results II: asymmetry vs. (pt1,pt2)

FIRST MEASUREMENT of Collins asymmetries vs. p_t in e⁺e⁻ annihilation at Q²~110 (GeV/c)² (time-like region)
 non-zero A^{UL} and A^{UC} asymmetries

⇒ only modest dependence on (p_{t1}, p_{t2}) ⇒ $A_0 < A_{12}$, but interesting structure in p_t

 $A^{UC} < A^{UL}$: complementary information on $H_1^{\perp, \text{ fav}}$ and $H_1^{\perp, \text{ dis}}$

Results III: asymmetry vs. polar angle

We study the angular dependence after integration over fraction energies and transverse momenta

$$\mathbf{A}_{12} \propto \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)}$$

==> Intercept consistent with zero, as expected (consistent with Belle results)

$$\mathbf{A}_{0} \propto \frac{\sin^{2} \theta_{2}}{1 + \cos^{2} \theta_{2}} \cos(2\phi_{0}) \mathcal{F}\left[\frac{H_{1}^{\perp}(z_{1})\bar{H}_{1}^{\perp}(z_{2})}{D_{1}(z_{1})\bar{D}_{1}(z_{2})}\right]$$

==> The linear fit gives a non-zero constant parameter (consistent with Belle results)

Lines: fit results with a linear functions Dotted lines: fit results with a linear function crossing the origin

4-D: asymmetry vs. $(z_{1,}z_{2})x(p_{t1,}p_{t2})$

Summary

BABAR has measured the Collins asymmetries for charged pion pairs in $e^+e^- \rightarrow u\overline{u}$, $d\overline{d}$, $s\overline{s} \rightarrow \pi^{\pm}\pi^{\pm}X$

\Rightarrow in two distinct reference frames	RF12	RF0
\Rightarrow vs. π^{\pm} fractional energy z	z ₁ , z ₂	Z ₁ , Z ₂
\Rightarrow vs. π^{\pm} transverse momentum p_t	p_{t1}, p_{t2}	p _{t0}
\Rightarrow 4-D analysis	z_1, z_2, p_{t1}, p_{t2}	
\Rightarrow polar angle	θ_{th}	θ_{2}

\supset A₁₂ and A₀ increase with increasing z₁, z₂

- consistent with theoretical expectations
- general agreement with Belle results (PRD 86, 039905(E) (2012))
- effect is stronger for leading particles
- $\supset A_{12}$ (A₀) increases with p_{t1}, p_{t2} (p_{t0}) for p_t between 0 to 1 GeV/c
 - first measurement in e^+e^- annihilation at $Q^2 \sim 110 (GeV/c)^2$
 - important for understanding the evolution of the fragmentation function
- $\supset A_{12}(A_0)$ increases linearly with $\sin^2\theta/(1+\cos^2\theta)$
 - as (might be) expected

Paper submitted to PRD

Results expected soon

Shanks for your attention

BK SLIDES

RF12: BaBar/Belle comparisons

TRANSVERSITY 2014

24

RF0: BaBar/Belle comparisons

TRANSVERSITY 2014

25

I. Garzia

D*-enhanced control sample

