Transversity 2014

Fourth International Workshop on
Transverse Polarization Phenomena in Hard Processes
9-13 June 2014, Chia, Cagliari

Measurement of Collins Asymmetries in inclusive production of pion pairs
 @ BaBar

Isabella Garzia

On behalf of the BaBar Collaboration

Outline

INTRODUCTION

- Theoretical framework
- Collins fragmentation functions
- Reference frames: RF12 and RF0
- PEP-II and the BaBar detector at SLAC

ANALYSIS OVERVIEW

- Analysis method
- Extraction of the asymmetry for light quarks
- Asymmetry corrections and studies of systematic uncertainty

RESULTS

- Asymmetries vs. pion fractional energies, pion transverse momentum, analysis axis polar angle, and 4-D results

PLANS and CONCLUSIONS

Collins Fragmentation Function

Fragmentation Functions (FFs) \rightarrow dimensionless and universal functions
\rightarrow non-perturbative information

\rightarrow describe the final state particles in hard processes
\rightarrow dependence on $\mathrm{z}=2 \mathrm{E}_{\mathrm{h}} / \sqrt{\mathrm{s}}, \mathrm{P}_{\perp}$, and s_{q}
"Standard" unpolarized FF

$$
\begin{aligned}
& D_{1}^{q \uparrow}\left(z, \mathbf{P}_{\perp} ; s_{q}\right)=D_{1}^{q}\left(z, P_{\perp}\right)+\frac{P_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, P_{\perp}\right) \mathbf{s}_{q} \cdot\left(\mathbf{k}_{q} \times \mathbf{P}_{\perp}\right) \\
& \quad \text { • could arise from a spin-orbit coupling }
\end{aligned}
$$

- leads to an azimuthal modulation of hadrons around the quark momentum $\mathbf{k}==>$ Collins asymmetry
- $\mathbf{H}_{1}{ }^{\perp}$ is the polarized fragmentation function or Collins FF
\rightarrow it describes the fragmentation of a transversely polarized quark into a spinless (or unpolarized) hadron h
- J. C. Collins, Nucl.Phys. B396, 161 (1993)

Collins effect

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

- In a given event, the q and $\overline{\mathrm{q}}$ spin directions are unknown, but they must be parallel, with a polarization component transverse to the q direction $\propto \sin ^{2} \theta$
- exploit this correlation by using hadrons in opposite jets
- the observed asymmetry is proportional to the product of two Collins functions:

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \rightarrow \pi_{1} \pi_{2} \mathrm{X} \quad(\mathrm{q}=\mathrm{u}, \mathrm{~d}, \mathrm{~s})==>\sigma \propto \cos \left(\phi_{\mathrm{i}}\right) \mathrm{H}_{1} \perp\left(\mathrm{z}_{1}\right) \otimes \mathrm{H}_{1} \perp\left(\mathrm{z}_{2}\right)
$$

SIDIS

- First observed in Semi-Inclusive DIS (SIDIS)
- unpolarized lepton beam (l) off transversely polarized target $(\mathrm{N})\left(l \mathbf{N} \rightarrow l^{\prime} \pi \mathbf{X}\right)$
- non-zero Collins effect
$-\sigma \propto \sin \left(\varphi_{h}+\varphi_{s}\right) \mathbf{h}_{1}\left(\mathbf{x}_{\mathrm{B}}\right) \otimes \mathbf{H}_{1}{ }^{\perp}\left(\mathbf{z}_{1}\right)$
- two chiral-odd functions
- azimuthal single spin asymmetry

Extraction of Collins functions from data

SIDIS

HERMES: PRL 94, 012002 (2005) COMPASS: NP B765, 31 (2007)

$$
\begin{aligned}
& A_{T} \propto h_{1}\left(x_{B}\right) \otimes H_{1}{ }^{\perp}(z) \\
&+
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{e}^{+} \mathbf{e}^{-} \text {annihilation } \\
\text { BELLE: PRL 96, 232002, PRD } \\
78,03201, \text { PRD } 86,039905(\mathrm{E}) \\
\mathrm{A} \propto \mathbf{H}_{1}{ }^{\perp}\left(\mathbf{z}_{1}\right) \otimes \mathbf{H}_{1}{ }^{\perp}\left(\mathbf{z}_{\mathbf{2}}\right)
\end{gathered}
$$

GLOBAL ANALYSIS: simultaneous determination of $\mathbf{H}_{1}{ }^{\perp}$ and the transversity parton distribution function h_{1}

$$
\text { Anselmino et al., PRD 75, 054032, NP Proc.Suppl. 191, } 98
$$

Improvements from BABAR studies:

- Different number of pion fractional energy intervals
- Asymmetry vs. pt and 4-D analysis
- Measurement obtained with a different experimental setup ==> different systematics

Reference Frames

RF12 or Thrust RF

- Thrust axis to estimate the $\mathrm{q} \overline{\mathrm{q}}$ direction
- $\varphi_{1,2}$ defined using thrust-beam plane
- Modulation diluted by gluon radiation, detector acceptance,...
$\frac{\mathrm{d} \sigma\left(e^{+} e^{-} \rightarrow \pi_{1} \pi_{2} X\right)}{\mathrm{d} z_{1} \mathrm{~d} z_{2} \mathrm{~d} \phi_{1} \mathrm{~d} \phi_{2} \mathrm{~d} \cos \theta_{t h}}=\sum_{q, \bar{q}} \frac{3 \alpha^{2}}{s} \frac{e_{q}^{2}}{4} z_{1}^{2} z_{2}^{2} \times$

$$
\left\{\left(1+\cos ^{2} \theta_{\text {th }}\right) D_{1}^{q,[0]}\left(z_{1}\right) D_{1}^{q,[0]}\left(z_{2}\right)+\sin ^{2} \theta_{\text {th }} \cos \left(\phi_{1}+\phi_{2}\right) H_{1}^{\perp q,[1]}\left(z_{1}\right) H_{1}^{\perp q,[1]}\left(z_{2}\right)\right\}
$$

RFO or Second hadron frame

Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Different combination of charged pions: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \rightarrow \pi_{1}^{ \pm} \pi_{2}^{ \pm(\mp)} \mathrm{X} \quad(\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s})$
\Rightarrow sensitivity to favored or unfavored FFs

- favored fragmentation process: i.e. $\mathrm{u} \rightarrow \pi^{+}, \mathrm{d} \rightarrow \pi^{-}$, describes the fragmentation of a quark of flavor q into a hadron with a valence quark of the same flavor
- disfavored for $d \rightarrow \pi^{+}, u \rightarrow \pi^{-}$, and $s \rightarrow \pi^{ \pm}$

$$
\begin{aligned}
& D^{\mathrm{fav}}(z)=D_{u}^{\pi^{+}}(z)=D_{d}^{\pi^{-}}(z) \\
& \bar{D}^{\mathrm{fav}}(z)=D_{\bar{u}}^{\pi^{-}}(z)=D_{d}^{\pi^{+}}(z) \\
& D^{\mathrm{dis}}(z)=D_{u}^{\pi^{-}}(z)=D_{d}^{\pi^{+}}(z)=D_{s}^{\pi^{ \pm}}(z) \\
& D^{\mathrm{dis}}(z)=D_{u}^{\pi^{-}}(z)=D_{d}^{\pi^{+}}(z)=D_{s}^{\pi^{ \pm}}(z)
\end{aligned}
$$

Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Unlike-sign pion pair $=\mathbf{U}$: $\pi^{\mp} \pi^{ \pm}$: (fav \mathbf{x} fav)+(dis \mathbf{x} dis)

Like-sign pion pair $=$ L: $\pi^{ \pm \pm \pm} \pi^{\text {: (fav }} \mathbf{X}$ dis) $+($ dis \mathbf{x} fav)

Charged pion pair $=\mathbf{C}(\mathbf{U}+\mathrm{L})$: $\pi \pi:$ (fav + dis) $\mathbf{x (f a v + d i s) ~}$

$$
\pi=\pi^{ \pm}
$$

The cross section can be written in terms of favored and disfavored fragmentation functions:

$$
\begin{aligned}
& N^{U}(\phi)=\frac{\mathrm{d} \sigma\left(e^{+} e^{-} \rightarrow \pi^{ \pm} \pi^{\mp} X\right)}{\mathrm{d} \Omega \mathrm{~d} z_{1} \mathrm{~d} z_{2}} \propto \frac{5}{9} D^{\mathrm{fav}}\left(z_{1}\right) \bar{D}^{\mathrm{fav}}\left(z_{2}\right)+\frac{7}{9} D^{\mathrm{dis}}\left(z_{1}\right) D^{\mathrm{dis}}\left(z_{2}\right) \\
& N^{L}(\phi)=\frac{\mathrm{d} \sigma\left(e^{+} e^{-} \rightarrow \pi^{ \pm} \pi^{ \pm} X\right)}{\mathrm{d} \Omega \mathrm{~d} z_{1} \mathrm{~d} z_{2}} \propto \frac{5}{9} D^{\mathrm{fav}}\left(z_{1}\right) \bar{D}^{\mathrm{dis}}\left(z_{2}\right)+\frac{5}{9} D^{\mathrm{dis}}\left(z_{1}\right) \bar{D}^{\mathrm{fav}}\left(z_{2}\right)+\frac{2}{9} D^{\mathrm{dis}}\left(z_{1}\right) \bar{D}^{\mathrm{dis}}\left(z_{2}\right) \\
& N^{C}(\phi)=\frac{\mathrm{d} \sigma\left(e^{+} e^{-} \rightarrow \pi \pi X\right)}{\mathrm{d} \Omega \mathrm{~d} z_{1} \mathrm{~d} z_{2}}=N^{U}(\phi)+N^{L}(\phi) \propto \frac{5}{9}\left[D^{\mathrm{fav}}\left(z_{1}\right)+D^{\mathrm{dis}}\left(z_{1}\right)\right]\left[\bar{D}^{\mathrm{fav}}\left(z_{2}\right)+\bar{D}^{\mathrm{dis}}\left(z_{2}\right)\right]+\frac{4}{9} D^{\mathrm{dis}}\left(z_{1}\right) \bar{D}^{\mathrm{dis}}\left(z_{2}\right)
\end{aligned}
$$

PEP-II and the BaBar Detector at SLAC

- Asymmetric detector
- c.m. acceptance $-0.9<\cos \theta^{*}<0.85 \mathrm{wrt}$ e^{-}beam
- Excellent performance
- good tracking, mass resolution
- good γ, π^{0} reconstruction
- full $\mathrm{e}, \mu, \pi, \mathrm{K}$, and p identification
- Asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider operating at the $\Upsilon(4 \mathrm{~S})$ resonance $(\sqrt{ }$ s $=10.58 \mathrm{GeV})$
- High Energy Ring (HER): 9.0 GeV e-
- Low Energy Ring (LER): 3.1 GeV e ${ }^{+}$
- c.m.-lab boost, $\beta \gamma \approx 0.56$
- High luminosity: $L \sim 468 \mathrm{fb}^{-1}$ used here

Analysis strategy

1) The analysis is performed using an integrated luminosity of $\mathcal{L} \sim 470 \mathrm{fb}^{-1}$ of data collected at the $\mathrm{r}(4 \mathrm{~S})$ and off-resonance
2) We study the Collins asymmetry in two different reference frames: RF12 and RF0 (Nucl.Phys. B 806, 23 (2009), PRD 78, 032011 (2008))

- Selection of multi-hadronic events
- Selection of pions in opposite jets according to the thrust axis
- the thrust axis in the $\mathrm{e}^{+} \mathrm{e}^{-}$center of mass frame is assumed to be the $\mathrm{q} \overline{\mathrm{q}}$ direction
- thrust axis direction chosen at random to avoid forward/backward detector asymmetry effect
- Measurement of the azimuthal angles ϕ_{i} in both reference frames as a function of:
- pion fractional energies $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)==>(6 \mathrm{x} 6)$ bins
- pion transverse momenta: $\left(p_{t 11}, p_{t 2}\right)==>(4 \times 4)$ bins; $p_{t 0}==>9$ bins
$-\sin ^{2} \theta_{(\mathrm{th}, 2)} /\left(1+\cos ^{2} \theta_{(\mathrm{th}, 2)}\right)=\Rightarrow 15$ bins
$-4-D$ analysis $==>\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \times\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)==>(4 \times 4) \times(3 \times 3)$
- Fit to the azimuthal distributions
- Estimation and subtraction of backgrounds
- Study of the systematic effects

Event and track selection

EVENT SELECTION

\rightarrow Number of charged tracks >2
\rightarrow Visible energy: $\mathbf{E}_{\text {vis }}>\mathbf{7 ~ G e V}$
\rightarrow Selection of two-jet topology events requiring thrust>0.8
\rightarrow Events in the $\tau^{+} \tau^{-}$region removed
DATA: E $_{\text {vis }}$ vs thrust

\rightarrow Opening angle ($\theta_{\text {pi-thrust }}$) of the pions with respect to the thrust axis $<45^{\circ}$
$\rightarrow \mathbf{Q}_{\mathbf{t}}<3.5 \mathrm{GeV}$, where Q_{t} is the transverse momentum of the virtual photon in the pions c.m.

Raw asymmetry

- Collins asymmetry
- consider all the \mathbf{U} and \mathbf{L} pion pairs
- make the normalized distributions of $\phi_{\alpha}=\phi_{1}+\phi_{2}$ or $2 \phi_{0}(\alpha=12,0)$
- The MC generator (JETSET) does not include the

Collins effect, but it shows a strong cosine modulation

- mostly due to acceptance of the detector
- depends strongly on the thrust axis polar angle
- but similar distribution for \mathbf{U} and \mathbf{L} pairs

- Data shows a large difference between U and L distributions, that can be ascribed to the Collins effect

Double Ratio

Acceptance effects can be reduced by performing the ratio of Unlike/Like sign pion pairs (or Unlike/Charged)

- small deviation from zero still present (<< asymmetry measured in data sample)

MC: small deviation from a flat distribution
DATA: cosine modulation clearly visible

$$
\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}}=\frac{N^{U}\left(\phi_{\alpha}\right) /<N^{U}\left(\phi_{\alpha}\right)>}{N^{L(C)}\left(\phi_{\alpha}\right) /<N^{L(C)}\left(\phi_{\alpha}\right)>} \rightarrow B_{\alpha}^{U L(U C)}+A_{\alpha}^{U L,(U C)} \cdot \cos \left(\phi_{\alpha}\right)
$$

A : contains only the Collins effect and higher order radiative effects

Extraction of uds Collins asymmetry

- In each bin, the data sample includes pairs from
- signal uds events
$-B \bar{B}$ events (small, mostly at low z)
- c $\overline{\mathrm{C}}$ events (important at low/medium z)
$-\tau^{+} \tau^{-}$events (important at high z)
- We must calculate these quantities:
- F_{i} using MC sample; we assign MC-data difference in each bin as systematic error $-A^{B \bar{E}}$ must be zero; we set $A^{B \bar{B}}=0$
- A^{τ} small in simulation; checked in data; we set $A^{\tau}=0$
- Charm background contribution is about 30% on average

Fraction of $\pi \pi$ due to the $i^{\text {th }} \mathrm{bkg}$

True asymmetry
$A_{\alpha}+\sum_{i} F_{i} \cdot A_{\alpha}^{i}$

- Both fragmentation processes and weak decays can introduce azimuthal asymmetries
- We used a $\mathbf{D}^{* \pm}$-enhanced control sample to estimate its effect

$$
\begin{aligned}
A_{\alpha}^{\text {meas }} & =\left(1-F_{c}-F_{B}-F_{\tau}\right) \cdot A_{\alpha}+F_{c} \cdot A_{\alpha}^{c} \\
A_{\alpha}^{D^{*}} & =\left(1-f_{c}-f_{B}\right) \cdot A_{\alpha}+f_{c} \cdot A_{\alpha}^{c} .
\end{aligned}
$$

Asymmetry dilution

We study the influence of the detector effects by correcting a posteriori the generated angular distribution: weights defined as $\mathbf{w}^{\mathrm{UL}(\mathrm{UC})}=1 \pm \boldsymbol{a}^{\bullet} \boldsymbol{\operatorname { c o s }}\left(\phi_{\text {gen } 12,0}\right)$ are applied to every selected pion pairs.

RF12: correction ranging between (1.3-2.3) as a
function of z, and (1.3-3) as a function of p_{t}.
RF0: no correction needed. tracking resolution.

The experimental method assumes the thrust axis as $\mathrm{q} \overline{\mathrm{q}}$ direction: this is only a rough approximation
RF12: large smearing since the azimuthal angles φ_{1} and φ_{2} are calculated with respect to the thrust axis; additional dilution due to very energetic tracks close to the thrust axis.
RF0: the azimuthal angle φ_{0} is calculated with respect to the second hadron momenta \rightarrow small smearing due to PID and

TRANSUERSITY 2014

Corrections and Systematics summary

We correct the asymmetries for:

- Background contributions
- MC bias
- Dilution effects (RF12 only)

A large number of systematic checks were done. The main contributions come from:

- Particle identification (PID): few percent change in the asymmetry by changing the PID cuts
- Fit procedure: different angular bin size leads to about 1% of deviation from standard bins
- MC uncertainties: we used different track selection requirements
- Dilution method
- Pion transverse momentum resolution (only for the asymmetry vs. $\left.\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)\right)$. The p_{t} resolution is about 100 MeV on average $==>10 \%$ effect on asymmetries for all bins, except for the lowest energies (30\%)

TRANSUERSITY 2014

Results I: asymmetry vs. $\left(z_{1}, z_{2}\right)$

Statistical errors shown as bars; systematic errors shown as bands
Significant nonzero A^{UL} and A^{UC} in all bins

- strong dependence on $\left(z_{1}, z_{2}\right): 1-39 \%$ in RF12 and $1-11 \%$ in RF0
- $\mathrm{A}^{\mathrm{UC}}<\mathrm{A}^{\mathrm{UL}}$ as expected; complementary information about the favored and disfavored fragmentation processes (PRD 73, 094025 (2006))
- consistent with $z_{1} \Leftrightarrow z_{2}$ symmetry

Results II: asymmetry vs. ($\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}$)

- FIRST MEASUREMENT of Collins asymmetries $\boldsymbol{v s} . p_{t}$ in $\mathrm{e}^{+} \mathbf{e}^{-}$annihilation at Q $\left.^{2 \sim 110 ~(~} \mathrm{GeV} / \mathrm{c}\right)^{2}$ (time-like region)
\bullet non-zero A^{UL} and A^{UC} asymmetries

\Rightarrow only modest dependence on $\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)$
$\Rightarrow \mathrm{A}_{0}<\mathrm{A}_{12}$, but interesting structure in p_{t}
$\mathbf{A}^{\mathbf{U C}}<\mathbf{A}^{\mathrm{UL}}$: complementary information on $\mathrm{H}_{1}{ }^{\perp}$, fav and $\mathrm{H}_{1}{ }^{\perp}$, dis

Results III: asymmetry vs, polar angle

We study the angular dependence after integration over fraction energies and transverse momenta
$\mathrm{A}_{12} \propto \frac{\sin ^{2} \theta_{t h}}{1+\cos ^{2} \theta_{t h}} \cos \left(\phi_{1}+\phi_{2}\right) \frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}\left(z_{1}\right) \bar{D}_{1}\left(z_{2}\right)}$
==> Intercept consistent with zero, as expected (consistent with Belle results)

$$
\mathrm{A}_{0} \propto \frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}\left(z_{1}\right) \bar{D}_{1}\left(z_{2}\right)}\right]
$$

$==>$ The linear fit gives a non-zero constant parameter (consistent with Belle results)

Lines: fit results with a linear functions Dotted lines: fit results with a linear function crossing the origin

4-D: asymmetry vs. $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \times\left(\mathrm{p}_{\mathrm{tt}}, \mathrm{p}_{\mathrm{t} 2}\right)$

We study the asymmetries in the RF12 frame in a four-dimensional space:

$$
\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{p} 2}\right)
$$

- We use $4 z_{i}$ and $3 p_{t}$ intervals
- Test to probe the factorization of the Collins fragmentation functions
- Powerful tools to access $p_{t}-z$ correlation
$\left(p_{t 1}, p_{t 2}\right)=[0 ., 0.25][0 ., 0.25]$
$\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{t} 2}\right)=[0 ., 0.25][0.25,0.5]$
$\nabla\left(p_{t 1}, p_{t 2}\right)=[0.25,0.5][0 ., 0.25]$$\left(p_{t 1}, p_{t 2}\right)=[0.25,0.5][0.25,0.5]$
\square
$\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)=[>0.5][0 ., 0.25]$ K $\left(p_{t 1}, p_{t 2}\right)=[>0.5][0.25,0.5]$
$\triangle\left(p_{t 1}, p_{t 2}\right)=[0 ., 0.25][>0.5]$
- $\left(\mathrm{p}_{\mathrm{t} 1} \mathrm{p}_{\mathrm{t} 2}\right)=[0.25,0.5][>0.5]$
$\nVdash\left(\mathrm{p}_{\mathrm{t} 1}, \mathrm{p}_{\mathrm{t} 2}\right)=[>0.5][>0.5]$

Summary

BABAR has measured the Collins asymmetries for charged pion pairs in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} \overline{\mathrm{u}}, \mathrm{d} \overline{\mathrm{d}}, \mathrm{s} \overline{\mathrm{s}} \rightarrow \pi^{ \pm} \pi^{ \pm} \mathrm{X}$
\Rightarrow in two distinct reference frames

RF12	RF0
$\mathbf{z}_{1}, \mathbf{z}_{2}$	$\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}}$
$\mathbf{p}_{\mathbf{t} 1}, \mathbf{p}_{\mathbf{t} 2}$	$\mathbf{p}_{\mathbf{t} 0}$
$\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{p}_{\mathrm{t} 1}, \mathbf{p}_{\mathbf{t} 2}$	
θ_{th}	θ_{2}

$\partial \mathrm{A}_{12}$ and A_{0} increase with increasing $\mathrm{z}_{1}, \mathrm{z}_{2}$

- consistent with theoretical expectations
- general agreement with Belle results (PRD 86, 039905(E) (2012))
- effect is stronger for leading particles
$\supset A_{12}\left(A_{0}\right)$ increases with $p_{t 1}, p_{t 2}\left(p_{t 0}\right)$ for p_{t} between 0 to $1 \mathrm{GeV} / \mathrm{c}$
- first measurement in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\mathrm{Q}^{2} \sim 110(\mathrm{GeV} / \mathrm{c})^{2}$
- important for understanding the evolution of the fragmentation function
$\Rightarrow \mathrm{A}_{12}\left(\mathrm{~A}_{0}\right)$ increases linearly with $\sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)$
- as (might be) expected

Paper submitted to PRD

PLANS

WHAT NEXT? Collins effect for kaon pairs
Why kaon pairs? \square Strange contribution to the Collins effect

Results expected soon

Thanks for your attention

BK SLIDES

RF12: BaBar/Belle comparisons

RFO: BaBar/Belle comparisons

TRANSUERSITY 2014

D*-enhanced control sample

