Quark Orbital Angular Momentum

Matthias Burkardt

NMSU

June 11, 2014

- Quark orbital angular momentum
- angular momentum decompositions (Jaffe v. Ji)
- quark-gluon correlations
- Summary

Ji decomposition

 $J_g = \int d^3x \left\langle P, S \right| \left[\vec{x} \times \left(\vec{E} \times \vec{B} \right) \right]^3 \left| P, S \right\rangle$

• $i\vec{D} = i\vec{\partial} - a\vec{A}$

Jaffe-Manohar decomposition

Photon Angular Momentum in QED

QED with electrons

$$\begin{split} \vec{J}_{\gamma} &= \int d^3 r \, \vec{r} \times \left(\vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{r} \times \left[\vec{E} \times \left(\vec{\nabla} \times \vec{A} \right) \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j - \vec{r} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j + \left(\vec{r} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right] \end{split}$$

• replace 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = ej^0 = e\psi^{\dagger}\psi$), yielding

$$\vec{J}_{\gamma} = \int d^3r \left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left(\vec{r} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]$$

• $\psi^{\dagger}\vec{r} \times e\vec{A}\psi$ cancels similar term in electron OAM $\psi^{\dagger}\vec{r} \times (\vec{p} - e\vec{A})\psi$

- \hookrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!
 - can also be done for only part of $\vec{A} \to \text{Chen}/\text{Goldman}$, Wakamatsu

• L_q matrix element of

$$q^{\dagger} \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^z q = \bar{q} \gamma^0 \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^z q$$

• \mathcal{L}_q^z matrix element of $(\gamma^+ = \gamma^0 + \gamma^z)$

$$\bar{q}\gamma^{+}\left[\vec{r}\times i\vec{\partial}\right]^{z}q\Big|_{A^{+}=0}$$

- (for $\vec{p} = 0$) matrix element of $\bar{q}\gamma^{z} \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^{z} q$ vanishes (parity!)
- $\hookrightarrow L_q \text{ identical to matrix element of } \bar{q}\gamma^+ \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^z q \text{ (nucleon at rest)}$
- $\stackrel{\hookrightarrow}{\to} \text{ even in light-cone gauge, } L^z_q \text{ and } \mathcal{L}^z_q \text{ still differ by matrix element} \\ \text{ of } q^{\dagger} \left(\vec{r} \times g \vec{A} \right)^z q \Big|_{A^+=0} = q^{\dagger} \left(r^x g A^y r^y g A^x \right) q \Big|_{A^+=0}$

•
$$L_x = yp_z - zp_y$$

 $\rightarrow J_x = \int d^3r \left[yT^{0z} - zT^{0y} \right]$

• if state invariant under rotations about \hat{x} axis then $\langle yp_z \rangle = -\langle zp_y \rangle$

$$\hookrightarrow \langle L_x \rangle = 2 \langle yp_z \rangle \to J_z = 2 \int d^3r \, y T^{0z}$$

- GPDs provide simultaneous information about p_z & \mathbf{b}_{\perp}
- \hookrightarrow use quark GPDs to determine angular momentum carried by quarks
- $\hookrightarrow \ J_q^x = \frac{1}{2} \int dx \, x \left[H(x,0,0) + E(x,0,0) \right]$ (X.Ji, 1996)
 - partonic interpretation in terms of 3D distribution (MB,2001,2005)

Impact parameter dependent quark distributions

proton polarized in $+\hat{x}$ direction

no axial symmetry!

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} -\frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

Physics: relevant density in DIS is $j^+ \equiv j^0 + j^z$ and left-right asymmetry from j^z

intuitive explanation

- moving Dirac particle with anomalous magnetic moment has electric dipole moment \perp to \vec{p} and \perp magnetic moment
- $\hookrightarrow \ \gamma^* \ \text{'sees' flavor dipole moment of} \\ \text{oncoming nucleon}$

Impact parameter dependent quark distributions

 $\begin{bmatrix} \hat{y} \\ \dots \\ j^z > 0 \end{bmatrix}$

 $i^z < 0$

Angular Momentum Carried by Quarks

Total (Spin+Orbital) Quark Angular Momentum

$$J_{q}^{x} = L_{q}^{x} + S_{q}^{x} = \int d^{3}r \left[yT_{q}^{0z}(\vec{r}) - zT_{q}^{0y}(\vec{r}) \right]$$

• $T_q^{\mu\nu}(\vec{r})$ energy momentum tensor $(T_q^{\mu\nu}(\vec{r}) = T_q^{\nu\mu}(\vec{r}))$

• $T_q^{0i}(\vec{r})$ momentum density $[P_q^i = \int d^3r T_q^{0i}(\vec{r})$]

• think:
$$(\vec{r} \times \vec{p})^x = yp^z - zp^z$$

relate to impact parameter dependent quark distributions $q(x, \mathbf{r}_{\perp})$:

Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction

• eigenstate under rotations about x-axis

relate to impact parameter dependent quark distributions $q(x, \mathbf{r}_{\perp})$:

Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction

• eigenstate under rotations about *x*-axis

$$\Rightarrow both terms in J_q^x equal: J_q^x = 2 \int d^3r \, y T_q^{0z}(\vec{r}) = \int d^3r \, y \left[T_q^{0z}(\vec{r}) + T_q^{z0}(\vec{r}) \right] \bullet \int d^3r \, y T_q^{00}(\vec{r}) = 0 = \int d^3r \, y T_q^{zz}(\vec{r}) \Rightarrow \quad J_s^x = \int d^3r \, y T_s^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz}$$

$$\int \frac{\partial q}{\partial q} \int \frac{\partial q}{\partial q} \frac{\partial q}{\partial q}$$

• $\int dx \, xq(x, \mathbf{r}_{\perp}) = \frac{1}{2m_N} \int dz T^{++}(\vec{r})$ (note: here x is momentum fraction and not r^x)

$$\hookrightarrow J_q^x = m_N \int dx \, x r^y q(x, \mathbf{r}_\perp)$$

• before applying this result to \perp shifted PDFs, need to consider 'overall \perp shift' of CoM for \perp polarized target...

relate to impact parameter dependent quark distributions $q(x, \mathbf{b}_{\perp})$:

- Thus $J_q^x = m_N \int dx \, x r^y q(x, \mathbf{r}_\perp)$ with $b^y = r^y \frac{1}{2m_N}$, where $q(x, \mathbf{r}_\perp)$ is distribution relative to CoM of whole nucleon
- recall: $q(x, \mathbf{b}_{\perp})$ for nucleon polarized in $+\hat{x}$ direction

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

$$\Rightarrow J_q^x = M_N \int dx \, x r^y q(x, \mathbf{r}_\perp) = \int dx \, x \left(m_N b^y + \frac{1}{2} \right) q(x, \mathbf{r}_\perp)$$
$$= \frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$$

Angular Momentum Carried by Quarks

relate to impact parameter dependent quark distributions $q(x, \mathbf{b}_{\perp})$:

- Thus $J_q^x = m_N \int dx \, xr^y q(x, \mathbf{r}_\perp)$ with $b^y = r^y \frac{1}{2m_N}$, where $q(x, \mathbf{r}_\perp)$ is distribution relative to CoM of whole nucleon
- recall: $q(x, \mathbf{b}_{\perp})$ for nucleon polarized in $+\hat{x}$ direction

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

$$\Rightarrow J_q^x = M_N \int dx \, x r^y q(x, \mathbf{r}_\perp) = \int dx \, x \left(m_N b^y + \frac{1}{2} \right) q(x, \mathbf{r}_\perp)$$
$$= \frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$$

• X.Ji (1996): rotational invariance \Rightarrow apply to all components of J

• partonic interpretation exists only for \perp components!

Angular Momentum Carried by Quarks crucial ingredients used:

• rotational invariance (around \perp axis) to relate $\langle T^{0z}y\rangle$ to $\langle T^{0y}z\rangle$

10

- rotational invariance (around \perp axis) to relate $\langle T^{++}z \rangle$ to $\langle T^{0z}y \rangle$
- parity to argue that $\langle \bar{q}\gamma^z \left[\vec{r}\times\vec{\partial}\right]^z q \rangle = 0$

Note: these symmetries are implied when writing down tensors!

consequences

• $\langle \bar{q}\gamma^z \left[\vec{r}\times\vec{\partial}\right]^0 q \rangle = 0 = \langle \bar{q}\gamma^+ \left[\vec{r}\times\vec{\partial}\right]^z q \rangle = 0$ (irrelevant whether quantized at equal time or on light front

•
$$L_q = \mathcal{L}_q$$
 in absence of \vec{A}

• none of the above valid in light-front constituent models

E. Leader's talk:

Model	LFCQM			LF _X QSM		
q	u	d	Total	u	d	Total
$\ell^q_{kin,z}$	0.071	0.055	0.126	-0.008	0.077	0.069
$\ell_{can,z}^q$	0.131	-0.005	0.126	0.073	-0.004	0.069
$\mathcal{L}^q_{can,z}$	0.169	-0.042	0.126	0.093	-0.023	0.069

 $\sum_{q} l_q = \sum_{q} L_q = \frac{1}{2} - \frac{1}{2} \sum_{q} \Delta_q$ due to conservation of L_z in models

11

scalar diquark model

- 'mother functions' $\psi^S_s(x, \mathbf{k}_\perp)$
- $\hookrightarrow \mathcal{L}_q \text{ from } |\psi_s^S(x,\mathbf{k}_\perp)|^2$
 - GPDs from overlap integrals of $\psi^{\dagger}\psi$
- $\hookrightarrow L_q$ from Ji
 - $L_q = \mathcal{L}_q$. No surprise since $L_q - \mathcal{L}_q \sim \langle q^{\dagger} \vec{r} \times \vec{A} q \rangle$ and no \vec{A} in scalar diquark model
 - $L_q(x) \neq \mathcal{L}_q(x)$

M.B. + Hikmat BC, PRD **79**, 071501 (2009)

QED for dressed e^- in QED

• 'mother functions' $\psi^S_{sh}(x,{\bf k}_\perp)$

$$\hookrightarrow \mathcal{L}_q \text{ from } |\psi^S_{sh}(x, \mathbf{k}_\perp)|^2$$

- GPDs from overlap integrals of $\psi^{\dagger}\psi$
- $\hookrightarrow L_q$ from Ji
 - $\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$

13

Ji decomposition $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + L_{q} + J_{g}$ $\frac{1}{2} \Delta q = \frac{1}{2} \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) \Sigma^{3} q(\vec{x}) | P, S \rangle$ $L = \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) (\vec{x} \times i\vec{D})^{3}_{q}(\vec{x}) | P, S \rangle$

$$L_{q} = \int d^{3}x \langle P, S | q^{i}(x) (x \times iD) q(x) | P, S \rangle$$
$$J_{g} = \int d^{3}x \langle P, S | \left[\vec{x} \times \left(\vec{E} \times \vec{B} \right) \right]^{3} | P, S \rangle$$
$$\bullet i\vec{D} = i\vec{\partial} - g\vec{A}$$

Jaffe-Manohar decomposition

light-cone framework & gauge $A^+ = 0$

$$\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

$$\begin{split} & \mathcal{L}_{q} = \int \! d^{3}r \langle P,\! S | \, \bar{q}(\vec{r}) \gamma^{+}\!\! \left(\vec{r} \times i\vec{\partial}\right)^{z}\!\! \left(\vec{r}\right) | P,\! S \rangle \\ & \Delta G = \varepsilon^{+-ij} \! \int \! d^{3}r \, \langle P,\! S | \, \mathrm{Tr} F^{+i} A^{j} \, | P,\! S \rangle \\ & \mathcal{L}_{g} = 2 \! \int \! d^{3}r \langle P,\! S | \, \mathrm{Tr} F^{+j}\! \left(\vec{x} \times i\vec{\partial}\right)^{z}\!\! A^{j} | P,\! S \rangle \\ & \text{manifestly gauge invariant definitions} \\ & \text{for each term exist} \ (\rightarrow \mathrm{Hatta}) \end{split}$$

• GPDs $\longrightarrow L^q$

•
$$\overrightarrow{p} \overrightarrow{p} \longrightarrow \Delta G \longrightarrow \mathcal{L} \equiv \sum_{i \in q,g} \mathcal{L}^{i}$$

• QED: $\mathcal{L}^e \neq L^e$ [M.B. + Hikmat BC, PRD **79**, 071501 (2009)]

•
$$\mathcal{L}^q - L^q = ?$$

- can we calculate/predict/measure the difference?
- what does it represent?

Wigner Functions (Belitsky, Ji, Yuan; Metz et al.)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+q(\xi)|PS\rangle.$$

 $\bullet~({\rm quasi})$ probabilty distribution for ${\bf b}_\perp$ and ${\bf k}_\perp$

•
$$f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

•
$$q(x, \mathbf{b}_{\perp}) = \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

OAM from Wigner (Lorcé, Pasquini, ...)

$$L_{z} = \int dx \int d^{2} \mathbf{b}_{\perp} \int d^{2} \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_{x} k_{y} - b_{y} k_{x})$$
$$= \int d^{3} r \langle P, S | \bar{q}(\vec{r}) \gamma^{+} (\vec{r} \times i\vec{\partial})^{z} q(\vec{r}) | P, S \rangle = \mathcal{L}^{q}$$

Gauge Invariance?

need to include Wilson-line gauge link to connect 0 and ξ (Ji, Yuan; Hatta; Lorcé;...)

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$\begin{split} W(x,\vec{b}_{\perp},\vec{k}_{\perp}) &\equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi)|PS\rangle, \\ \langle \vec{k}_{\perp}\rangle &\equiv \int dx \int d^2\mathbf{b}_{\perp} \int d^2\mathbf{k}_{\perp} W(x,\vec{b}_{\perp},\vec{k}_{\perp})\vec{k}_{\perp} \text{ depends on choice of path!} \end{split}$$

difference
$$\langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle$$

 $\langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) q(\vec{x}) | P, S \rangle$

 $\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$

straight-line gauge link

$$\langle \vec{k}_{\perp} \rangle = \langle P, S | \bar{q}(\vec{x}) \gamma^{+} i \vec{D} q(\vec{x}) | P, S$$

• $i \vec{D} = i \vec{\partial} - g \vec{A}(\vec{x})$

•
$$\langle \vec{k}_{\perp} \rangle = 0$$
 (T-odd !)

In pht-cone staple

$$\xi_{\perp} = \left(\begin{array}{c} \langle \vec{k}_{\perp} \rangle & \langle \vec{k}_{\perp} \rangle \\ \langle \vec{k}_{\perp} \rangle & \langle \vec{k}_{\perp} \rangle \\ \circ \text{ correct choice for } \mathbf{k}_{\perp} \text{ distributions} \\ \langle \vec{k}_{\perp} \rangle &= \langle P, S | \bar{q}(\vec{x}) \gamma^{+} i \vec{D} q(\vec{x}) | P, S \rangle \\ \circ i \vec{D} &= i \vec{\partial} - g \vec{A} (x^{=} \infty, \mathbf{x}_{\perp}) + g \int_{x^{-}}^{\infty} dr^{-} \vec{\partial} A^{+} \\ \circ i D^{j} &= i \partial^{j} - g A^{j} (x^{-}, \mathbf{x}_{\perp}) - g \int_{x^{-}}^{\infty} dr^{-} F^{+j} \end{array} \right)$$

15

15

difference $\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle$

$$\langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) q(\vec{x}) | P, S \rangle$$

color Lorentz Force acting on ejected quark (Qiu, Sterman)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

difference $\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle$

$$\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle = -g \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ \int_{x^-}^{\infty} dr^- F^{+\perp}(r^-, \mathbf{x}_{\perp}) q(\vec{x}) | P, S \rangle$$

color Lorentz Force acting on ejected quark (Qiu, Sterman)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

Corollary: $d_2 \leftrightarrow$ average \perp force on quark in DIS from \perp pol targetpolarized DIS:MB, PRD 88 (2013) 114502

• $\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$ • $\sigma_{LT} \propto g_T \equiv g_1 + g_2$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

• $g_2 = g_2^{WW} + \overline{g}_2$ with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_{2} \equiv 3 \int dx \, x^{2} \bar{g}_{2}(x) = \frac{1}{2MP^{+2}S^{x}} \left\langle P, S \left| \bar{q}(0)\gamma^{+}gF^{+y}(0)q(0) \right| P, S \right\rangle$$

matrix element defining d_2

 \leftrightarrow 1st integration point in QS-integral

15

light cono stanlo

15

difference $\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle$

$$\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle = -g \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ \int_{x^-}^{\infty} dr^- F^{+\perp}(r^-, \mathbf{x}_{\perp}) q(\vec{x}) | P, S \rangle$$

color Lorentz Force acting on ejected quark (Qiu, Sterman)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

Corollary: $d_2 \leftrightarrow$ average \perp force on quark in DIS from \perp pol targetpolarized DIS:MB, PRD 88 (2013) 114502

• $\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$ • $\sigma_{LT} \propto g_T \equiv g_1 + g_2$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

• $g_2 = g_2^{WW} + \bar{g}_2$ with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)\gamma^+ g F^{+y}(0)q(0) \right| P, S \right\rangle$$

sign of d_2^q opposite Sivers $f_{1T}^{\perp q} \downarrow \leftrightarrow \perp$ deformation of quark distributions

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S' | \bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi) | PS \rangle$$

W and thus $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$ may depend on choice of path!

straight line (Ji et al.)

straigth Wilson line from 0 to ξ yields $L^{q} = \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) \left(\vec{x} \times i \vec{D} \right)_{q}^{z} (\vec{x}) | P, S \rangle$

•
$$i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x})$$

- same as Ji-OAM
- $f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$ not the TMDs relevant for SIDIS (missing FSI!)

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+\mathcal{U}_{0\xi}q(\xi)|PS\rangle$$

W and thus $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$ may depend on choice of path!

Light-Cone Staple for $\mathcal{U}_{0\xi}^{\pm LC}$ (Hatta)

- want Wigner function that yields TMDs relevant for SIDIS when integrated $d^2\mathbf{b}_{\perp}$
- $\stackrel{\hookrightarrow}{\longrightarrow} \text{path for gauge link} \stackrel{\longrightarrow}{\longrightarrow} \\ \text{'light-cone staple'} \stackrel{\longrightarrow}{\longrightarrow} \\ \mathcal{U}_{0\xi}^{+LC}$

$$\begin{aligned} \mathcal{L}^{q}_{+} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left(\vec{x} \times i \vec{\mathcal{D}} \right)^{z}_{q}(\vec{x}) | P, S \rangle \\ i \vec{\mathcal{D}} = i \vec{\partial} - g \vec{A}(\infty, \mathbf{x}_{\perp}) \qquad (A^{+} = 0) \end{aligned}$$

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+\mathcal{U}_{0\xi}q(\xi)|PS\rangle$$

W and thus $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$ may depend on choice of path!

Light-Cone Staple for $\mathcal{U}_{0\xi}^{\pm LC}$ (Hatta)

- want Wigner function that yields TMDs relevant for SIDIS when integrated $d^2\mathbf{b}_{\perp}$
- $\stackrel{\hookrightarrow}{\longrightarrow} \text{ path for gauge link } \stackrel{\longrightarrow}{\longrightarrow} \mathcal{U}_{0\xi}^{+LC}$ 'light-cone staple' $\stackrel{\longrightarrow}{\longrightarrow} \mathcal{U}_{0\xi}^{+LC}$

$$\begin{aligned} \mathcal{L}^{q}_{+} = \int d^{3}x \langle P, S | \overline{q}(\vec{x}) \gamma^{+} \left(\vec{x} \times i \vec{\mathcal{D}} \right)^{z}_{q}(\vec{x}) | P, S \rangle \\ i \vec{\mathcal{D}} = i \vec{\partial} - g \vec{A}(\infty, \mathbf{x}_{\perp}) + g \int_{x^{-}}^{\infty} dr^{-} \vec{\partial} A^{+} \\ i \mathcal{D}^{j} = i \partial^{j} - g A^{j}(x^{-}, \mathbf{x}_{\perp}) - g \int_{x^{-}}^{\infty} dr^{-} F^{+j} \end{aligned}$$

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle$$

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$$

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\mathcal{D}^j = i\partial^j - gA^j(x^-, \mathbf{x}_\perp) - g\int_{x^-}^{\infty} dr^- F^{+j}$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^q - L^q = -g \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ \left[\vec{x} \times \int_{x^-}^{\infty} dr^- F^{+\perp}(r^-, \mathbf{x}_{\perp}) \right]^z q(\vec{x}) | P, S \rangle$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\mathcal{D}^j = i\partial^j - gA^j(x^-, \mathbf{x}_\perp) - g\int_{x^-}^{\infty} dr^- F^{+j}$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times \int_{r^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})]^{z} q(\vec{x}) | P, S$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y \text{ for } \vec{v} = (0, 0, -1)$$

Torque along the trajectory of q

 $T^{z} = \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^{z}$

Change in OAM

$$\Delta L^z = \int_{x^-}^\infty dr^- \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^z$$

17

straight line
$$(\rightarrow \text{Ji})$$

 $\mathcal{L}_{q} = \int d^{3}x \langle P, S | \bar{q}(\vec{x})\gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$
 $\bullet i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x})$
 $i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x})$
 $i\vec{D} = i\vec{\partial} - g\vec{A}(x^{-} = \infty, \mathbf{x}_{\perp})$

difference $\mathcal{L}^q - L^q \ (\rightarrow \text{Wakamatsu: } L^q_{pot})$

 $\mathcal{L}^q - L^q = \Delta L^q_{FSI}$ = change in OAM as quark leaves nucleon

example: torque in magnetic dipole field

18

Connection with Jaffe-Manohar-Bashinsky

$\overline{19}$

antisymm. boundary condition

- $A^+ = 0$
- fix residual gauge inv. $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \phi(\vec{x}_{\perp})$ by imposing $\vec{A}_{\perp}(\infty, \vec{x}_{\perp}) = -\vec{A}_{\perp}(-\infty, \vec{x}_{\perp})$
- $\vec{A}_{\perp}(\infty, \vec{x}_{\perp}) \vec{A}_{\perp}(-\infty, \vec{x}_{\perp}) = \int dx^- F^{+\perp}$ gauge inv.
- \mathcal{L}_+ involves $i\vec{\mathcal{D}}_+ = i\vec{\partial} g\vec{A}(\infty, \mathbf{x}_\perp)$
- \mathcal{L}_{-} involves $i\vec{\mathcal{D}}_{-} = i\vec{\partial} g\vec{A}(-\infty, \mathbf{x}_{\perp})$
- $\mathcal{L}_+ = \mathcal{L}_- \to \text{no contribution from } \vec{A}(\infty, \mathbf{x}_\perp)$
- \hookrightarrow 'naive' JM OAM $\mathcal{L}_{JM} = \mathcal{L}_+ = \mathcal{L}_-$

alternative: Bashinsky-Jaffe

•
$$A^+ = 0$$

• $\vec{x} \times i\vec{\partial} \rightarrow \vec{x} \times \left[i\vec{\partial} - g\vec{\mathcal{A}}(\vec{x}_{\perp})\right]$
• $\vec{\mathcal{A}}_{\perp}(\vec{x}_{\perp}) = \frac{\int dx^- \vec{\mathcal{A}}_{\perp}(x^-, \vec{x}_{\perp})}{\int dx^-}$

PT (Hatta)

• $\operatorname{PT} \longrightarrow \mathcal{L}_+ = \mathcal{L}_-$

(different from SSAs due to factor \vec{x} in OAM)

Connection with Jaffe-Manohar-Bashinsky

19

antisymm. boundary condition

- $A^+ = 0$
- fix residual gauge inv. $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \phi(\vec{x}_{\perp})$ by imposing $\vec{A}_{\perp}(\infty, \vec{x}_{\perp}) = -\vec{A}_{\perp}(-\infty, \vec{x}_{\perp})$
- $\vec{A}_{\perp}(\infty, \vec{x}_{\perp}) \vec{A}_{\perp}(-\infty, \vec{x}_{\perp}) = \int dx^- F^{+\perp}$ gauge inv.
- \mathcal{L}_+ involves $i\vec{\mathcal{D}}_+ = i\vec{\partial} g\vec{A}(\infty, \mathbf{x}_\perp)$
- \mathcal{L}_{-} involves $i\vec{\mathcal{D}}_{-} = i\vec{\partial} g\vec{A}(-\infty, \mathbf{x}_{\perp})$
- $\mathcal{L}_+ = \mathcal{L}_- \to \text{no contribution from } \vec{A}(\infty, \mathbf{x}_\perp)$ \hookrightarrow 'naive' JM OAM $\mathcal{L}_{JM} = \mathcal{L}_+ = \mathcal{L}_-$

alternative: Bashinsky-Jaffe

PT (Hatta)

• $\mathrm{PT} \longrightarrow \mathcal{L}_{+} = \mathcal{L}_{-}$

factor \vec{x} in OAM)

(different from SSAs due to

•
$$A^+ = 0$$

• $\vec{x} \times i\vec{\partial} \rightarrow \vec{x} \times \left[i\vec{\partial} - g\vec{\mathcal{A}}(\vec{x}_{\perp})\right]$
• $\vec{\mathcal{A}}_{\perp}(\vec{x}_{\perp}) = \frac{\int dx^- \vec{\mathcal{A}}_{\perp}(x^-, \vec{x}_{\perp})}{\int dx^-} = \frac{1}{2} \left(\vec{\mathcal{A}}_{\perp}(\infty, \vec{x}_{\perp}) + \vec{\mathcal{A}}_{\perp}(-\infty, \vec{x}_{\perp})\right)$
 $\hookrightarrow \mathcal{L}_{JB} = \frac{1}{2} \left(\mathcal{L}_+ + \mathcal{L}_-\right) = \mathcal{L}_+ = \mathcal{L}_-$

Nucleon Spin Decompositions

The Difference $\mathcal{L}_q - L_q$ [MB, PRD88, 056009 (2013)]

$$\mathcal{L}^{q} - L^{q} = -\int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-}gF^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{0}) | P, S \rangle / \mathcal{N}$$

• in QCD, additional Wilson lines (along r^-)

compare $\langle \mathbf{k}_{\perp} \rangle \equiv \int dx \int d^2 \mathbf{k}_{\perp} f(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}$

$$f(x,\vec{k}_{\perp}) \equiv \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} \langle P'S'|\bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi)|PS\rangle$$

- Wilson line $\mathcal{U}_{0\xi}$ along x^- to properly account for FSI acting on ejected quark, i.e. $f(x, \mathbf{k}_{\perp})$ momentum distribution incl. FSI
- relevant for SIDIS (JLab, EIC) and DY (RHIC)
- $$\begin{split} \langle \mathbf{k}_{\perp} \rangle &= \langle P,\!S | \bar{q}(0) \gamma^+ \! \int_0^\infty dr^-\!g F^{+\perp}(r^-, \mathbf{0}_{\perp}) q(\vec{0}) | P,\!S \rangle \\ \langle \mathbf{k}_{\perp} \rangle &= (\text{average}) \text{ change in } \perp \text{ momentum due to} \\ \text{FSI as quark leaves target (Qiu, Sterman)} \end{split}$$

Color Lorentz Force

$$F^{+y} = F^{0y} + F^{zy}$$
$$= -E^y + B^x$$
$$= -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$

for $\vec{v} = (0, 0, -1)$

 $\sqrt{2}i$

Light-Cone Staple for $\mathcal{U}_{0\varepsilon}^{\pm LC}$

Nucleon Spin Decompositions

The Difference $\mathcal{L}_q - L_q$ [MB, PRD88, 056009 (2013)]

 $\mathcal{L}^q - L^q = -\int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ \left[\vec{x} \times \int_{x^-}^{\infty} dr^- g F^{+\perp}(r^-, \mathbf{x}_{\perp}) \right]^z q(\vec{0}) | P, S \rangle / \mathcal{N}$ $\mathcal{L}_q - L_q = (\text{average}) \text{ change in OAM due to FSI as quark leaves target}$

compare $\langle \mathbf{k}_{\perp} \rangle \equiv \int dx \int d^2 \mathbf{k}_{\perp} f(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}$

$$f(x,\vec{k}_{\perp}) \equiv \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} \langle P'S'|\bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi)|PS\rangle$$

- Wilson line $\mathcal{U}_{0\xi}$ along x^- to properly account for FSI acting on ejected quark, i.e. $f(x, \mathbf{k}_{\perp})$ momentum distribution incl. FSI
- relevant for SIDIS (JLab, EIC) and DY (RHIC)
- $$\begin{split} \langle \mathbf{k}_{\perp} \rangle &= \langle P, S | \bar{q}(0) \gamma^+ \int_0^\infty dr^- g F^{+\perp}(r^-, \mathbf{0}_{\perp}) q(\vec{0}) | P, S \rangle \\ \langle \mathbf{k}_{\perp} \rangle &= (\text{average}) \text{ change in } \perp \text{ momentum due to} \\ \text{FSI as quark leaves target (Qiu, Sterman)} \end{split}$$

Color Lorentz Force

$$\begin{array}{rcl} \sqrt{2}F^{+y} &=& F^{0y}+F^{zy}\\ &=& -E^y+B^x\\ &=& -\Bigl(\vec{E}+\vec{v}\times\vec{B}\Bigr)^y \end{array}$$

for $\vec{v} = (0, 0, -1)$

Light-Cone Staple for $\mathcal{U}_{0\varepsilon}^{\pm LC}$

Calculating Jaffe-Monohar OAM in Lattice QCD 21

M.Burkardt+A.Miller+W.-D.Nowak, Rept.Prog.Phys. 73 (2010) 016201

In decomposition (103), each term has a partonic interpretation. The gluon spin contribution ΔG appears explicitly. It is experimentally accessible (see section 2.8) and can be defined as the expectation value of a (nonlocal) manifestly gauge invariant operator. In light-cone gauge, this operator collapses to a local operator (and its expectation value has a partonic interpretation). No direct experimental access to the parton orbital angular momentum \mathcal{L} has been identified. Its value can be obtained only by subtracting the quark and gluon spin contributions from the nucleon spin. Both ΔG and \mathcal{L} can be defined through matrix elements of local operators only in light-cone gauge $A^+ = 0$. Explicit definitions for the operators appearing in both decompositions can be found in [242]. Since neither one can be represented as the matrix element of a manifestly gauge invariant local operator, they cannot be analytically continued to Euclidean space and are thus inaccessible for lattice QCD.

Jaffe-Manohar Decomposition

$$\frac{1}{2} = J_z = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}.$$

(103)

Calculating Jaffe-Monohar OAM in Lattice QCD 22

- TMDs/Wigner functions relevant for SIDIS require (near) light-like Wilson lines
- on Euclidean lattice, all distances are space-like

- calculate space-like staple-shaped Wilson line pointing in \hat{z} direction; length $L \to \infty$
- momentum projected nucleon sources/sinks
- remove IR divergences by considering appropriate ratios
- \hookrightarrow extrapolate/evolve to $P_z \to \infty$

Quasi Light-Like Wilson Lines from Lattice QCD 23

00

Quasi Light-Like Wilson Lines from Lattice QCD 23

00

Calculating Jaffe-Monohar OAM in Lattice QCD 24

TMDs in lattice QCD

- calculate space-like staple-shaped Wilson line pointing in \hat{z} direction; length $L \to \infty$
- momentum projected nucleon sources/sinks
- remove IR divergences by considering appropriate ratios
- \hookrightarrow extrapolate/evolve to $P_z \to \infty$

next: Orbital Angular Momentum

- same operator as for TMDs, only nonforward matrix elements:
 - momentum transfer provides position space information $(\rightarrow \mathbf{r}_{\perp} \times \mathbf{k}_{\perp})$
 - staple with long side in \hat{z} direction
 - (large) nucleon momentum in \hat{z} direction
 - small momentum transfer in \hat{y} direction
- \hookrightarrow generalized TMD F_{14} (Metz et al.)
 - quark OAM
 - renormalization same as f_{1T}^{\perp}
- \hookrightarrow study ratios...

Summary

- GPDs and OAM
- TMDs and OAM from Wigner distributions
- straight-(Wilson)line gauge link $\longrightarrow L^q$ ('Ji-OAM')
- light-cone staple- gauge link $\longrightarrow \mathcal{L}^q_+$ ('JM-OAM')
- $\mathcal{L}^q_+ L^q =$ change in OAM as quark leaves nucleon (torque due to FSI)
- $A^+ = 0$ gauge (with anti-symmetric boundary condition) $\mathcal{L}^q_+ \to$ canonical OAM (Jaffe-Manohar-OAM)
- JM-OAM from lattice QCD

