New results on transverse spin asymmetries from COMPASS Part **II**

 $Christopher Braun^1$

on behalf of the ${\bf COMPASS}$ collaboration

¹University of Erlangen-Nürnberg

4th International Workshop on Transverse Polarization Phenomena in Hard Processes June 12th 2014, Cagliari, Italy

Outline

1 Theoretical framework

2 Data selection

3 Results

- deuteron data
- proton data

4 Transversity extraction

5 Studies on the inter-relationship of Collins and dihadron asymmetries

Theoretical framework

to the dihadron asymmetry

Theoretical framework ► angle definitions

 $\ell N^{\uparrow} \to \ell' h_1 h_2 X$

Fragmentation of a transversely polarized quark into a pair of unpolarized hadrons

- *l*, *l'* and *q* are 3-momenta of incoming, scattered lepton and virtual photon
- ϕ_{S} azimuthal angle of the spin S of the fragmenting quark
- p_i is the 3-momenta of h_i
- z_i is the fraction of the virtualphoton energy carried by h_i

•
$$R = rac{z_2 p_1 - z_1 p_2}{z_1 + z_2} = \xi_2 p_1 - \xi_1 p_2$$

- R_T is the component of R perpendicular to q
- Azimuthal angle of R: $\phi_R = \frac{(q \times l) \cdot R}{|(q \times l) \cdot R|} \arccos\left(\frac{(q \times l) \cdot (q \times R)}{|q \times l||q \times R|}\right)$
- Difference of the azimuthal angles of the two hadrons: $\Delta \Phi = |\phi_{h^+} - \phi_{h^-}|$

4 / 34

Theoretical framework ► dihadron cross section

The differential dihadron cross section is¹:

$$\frac{\mathrm{d}^{7}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\phi_{R}\,\mathrm{d}\phi_{S}\,\mathrm{d}\cos\theta\,\mathrm{d}M_{h}^{2}} = \frac{2\alpha^{2}}{4\pi\,Q^{2}\,y}\sum_{q}e_{q}^{2}\left[A(y)f_{1}^{q}(x)D_{1}^{q}(z,\cos\theta,M_{h}^{2})\right.$$
$$\left. +\lambda_{e}S_{L}\frac{C(y)}{2}g_{1}^{q}(x)D_{1}^{q}(z,\cos\theta,M_{h}^{2})\right.$$
$$\left. +B(y)\frac{|S_{T}||R_{T}|}{M_{h}}\sin\phi_{RS}h_{1}^{q}(x)H_{1}^{\triangleleft q}(z,\cos\theta M_{h}^{2})\right]$$

with
$$\phi_{RS} = \phi_R + \phi_S - \pi$$
, $A(y) = \left(1 - y + \frac{y^2}{2}\right)$, $B(y) = (1 - y)$, and $C(y) = y(2 - y)$.

Where $h_1(x)$ is the Transversity PDF and $H_{1,q}^{\triangleleft}$ is the dihadron fragmentation function, which describes the Fragmentation of a transversely polarized quark into two unpolarized hadrons. $D_{1,q}$ is the unpolarized dihadron fragmentation function, which is measured at *e.g.* BELLE².

 $^1 cf.$ talk by Marco Radici $^2 cf.$ talk by Francesca Giordano & Matthias Grosse
Perdekamp

Theoretical framework ► asymmetries extraction

The dihadron asymmetry then is:

$$A_{UT}^{\sin\phi_{RS}} = |\boldsymbol{S}_{T}| \frac{B(y)}{A(y)} \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \int \mathrm{d} \cos \theta \frac{|\boldsymbol{R}_{T}|}{2M_{h}} H_{1}^{\triangleleft,q}(z,\cos\theta,M_{h}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q} \int \mathrm{d} \cos \theta D_{1}^{q}(z,\cos\theta,M_{h}^{2})}$$

 $\sigma_{UU}(1 \pm f P_T D_{NN} A_{UT}^{\sin \phi_{RS}} \sin \theta \sin \phi_{RS})$

 θ_{P_2} in the pair's center of mass

frame

 σ_{UU} = unpolarized cross section \pm indicates nucleon spin orientation

- f =target dilution factor
- P_T = target polarization

 $D_{NN} = \text{spin transfer coef.}$

$$D_{NN} = \frac{1-y}{1-y+\frac{y^2}{2}}$$

We measure: $N_{2h}(x, y, z, M_{inv}^2, \theta, \phi_{RS}) \propto$

Data selection

Data selection ► hadron & hadron pair cuts

hadron & hadron pair cuts:

- at least 2 outgoing hadrons with opposite charge
- z > 0.1 for each hadron
- $x_F > 0.1$ for each hadron
- $E_{miss} > 3 \text{ GeV}$ for each pair
- $R_T > 0.07 \text{ GeV}/c$ for each pair

dihadron asymmetries:

deuteron data

Results \blacktriangleright deuteron data \blacktriangleright all hadron h^+h^- pairs

from: Adolph C. *et al.* [COMPASS Collaboration], Phys. Lett. B **713** (2012) 10 blue solid line: Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 blue dashed line: Ma B.-Q. *et al.*, Phys. Rev. D **77** (2008) 014035

 \hookrightarrow Asymmetries of h^+h^- pairs from the deuteron target compatible with zero within the uncertainties

Interpreted as a close-to-complete cancellation of the u and d quark contributions from the transversity PDFs on the deuteron as an isoscalar target.

Results \triangleright deuteron data \triangleright $\pi^+\pi^-$ pairs

C.B.@DIS2014 blue line: Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 red and dashed lines: Ma B.-Q. *et al.*, Phys. Rev. D **77** (2008) 014035

Complete reanalysis of the deuteron data with unified cuts and methods w.r.t. to the proton data analysis!

 \hookrightarrow Asymmetries of $\pi^+\pi^-$ pairs from the deuteron target compatible with zero within the uncertainties.

Results ► deuteron data ► all identified pairs

dihadron asymmetries:

proton data

Results \triangleright proton 2007 data \triangleright all hadron h^+h^- pairs

from: Adolph C. et al. [COMPASS Collaboration], Phys. Lett. B 713 (2012) 10

 \hookrightarrow Large asymmetries of h^+h^- pairs on the proton target in x dependence up to -10 % Qualitative agreement with model predictions

Results \triangleright proton 2010 data \triangleright all hadron h^+h^- pairs

from: Adolph C. et al. [COMPASS Collaboration], CERN preprint PH-EP-2014-013 [arXiv:1401.7873] accepted by Nucl.Phys.B.

 \hookrightarrow Large asymmetries of h^+h^- pairs on the proton target in the x dependence up to -6%

Results \triangleright proton data \triangleright $\pi^+\pi^-$ pairs

 $\hookrightarrow \text{Clear asymmetries of } \pi^+\pi^- \text{ pairs}$ x up to -7% z no clear trend

 M_{inv} indication of a dip around ρ^0 mass

C.B.@DIS2013

Results ► proton data ► all identified pairs

Results > proton data > comparison with **HERMES**

C.B.@DIS2013 from: Airapetian A. et al. *et al.* [HERMES collaboration], J. High Energ. Phys. **06** (2008) 017 scaled with $\frac{1}{D_{nn}}$ [X.-R. Lu PhD thesis] and sign changed

 \hookrightarrow Good agreement within the uncertainties, bearing in mind the larger kinematic range of COMPASS

cf. talk by Charlotte Van Hulse

Results \triangleright proton data $\triangleright \pi^+\pi^-$ model predictions

C.B.@DIS2013 blue line: Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 red and dashed lines: Ma B.-Q. *et al.*, Phys. Rev. D **77** (2008) 014035

 $\hookrightarrow x$: Ma trend confirmed | Bachetta good agreement $\hookrightarrow z$: Ma too large | Bachetta compatible $\hookrightarrow M_{inv}$: Ma too large | Bachetta good agreement around ρ^0 mass

Results \triangleright proton data $\triangleright \pi^+\pi^-$ model predictions

C.B.@DIS2013 blue line: Bacchetta A. and Radici M., Phys. Rev. D **74** (2006) 114007 red and dashed lines: Ma B.-Q. *et al.*, Phys. Rev. D **77** (2008) 014035

Improved agreement with Ma model if only the valence region is considered.

Transversity extraction

of u and d valence quarks

Results ► deuteron & proton data ► all identified pairs

First complete set of identified dihadron asymmetries with unified cuts, binning and fit method from deuteron and proton targets.

Transversity extraction ► motivation & theory

A transversely polarized deuteron target gives access to:

$$xh_{1,d}(x; Q^2) = xh_1^u(x; Q^2) + xh_1^d(x; Q^2)$$

A transversely polarized proton target gives access to:

$$xh_{1,p}(x; Q^2) = xh_1^u(x; Q^2) - \frac{1}{4}xh_1^d(x; Q^2)$$

→ Bacchetta *et al.* in JHEP03 (**13**) 119 extracted $xh_{1,d}(x; Q^2)$ and $xh_{1,p}(x; Q^2)$ from HERMES $\pi^+\pi^-$ and COMPASS h^+h^- results [PLB **713** (12) 10].

 \Rightarrow Use their method together with the new full set of $\pi^+\pi^-$ results to extract the *u* and *d* valence quark transversity distributions bin-by-bin.

Transversity extraction \triangleright 1st step \triangleright results

C.B.@DIS2014

 $\hookrightarrow xh_{1,d}$ compatible with zero within the uncertainties $\hookrightarrow xh_{1,p}$ sizable signal at large x

Extraction of Transversities \triangleright 1st step \triangleright comparison

Comparison with results in JHEP03 (13) 119 Bacchetta *et al.*: $(2002/03/04/07 \ h^+h^-data)$

0.10

х

0.01

Extraction of Transversities \triangleright 2nd step \triangleright results

 xh_1^u and xh_1^d are obtained by solving the system of equations: $xh_1^u(x; Q^2)$ $xh_1^d(x; Q^2)$

C.B.@DIS2014

 $\hookrightarrow xh_1^u$ clear transversity signal $\hookrightarrow xh_1^d$ suffers from low deuteron data statistics

Extraction of Transversities > comparison with global fit

Comparison of new results with Bacchetta *et al.* JHEP03 (13) 119: $xh_1^u(x; Q^2)$ $xh_1^d(x; Q^2)$

C.B.@DIS2014

No surprise: New COMPASS data points are (still) very well compatible with the fit to the h^+h^- data.

Extraction of Transversities > comparison with

Comparison of results from single hadron Collins asymmetry global fit by Anselmino *et al.* Phys.Rev.D 87(2013)094019 [arXiv:1303.3822]:

Very good agreement for the u-quark Transversity and fair agreement for d-quark.

Better agreement with A_{12} BELLE e^+e^- results than A_0 .

Studies on the inter-relationship of

Collins and dihadron asymmetries

NEW

Collins vs. dihadron asymmetries > motivation

1. Observation of almost equal shape and strength of the Collins asymmetry of h^+ and the dihadron h^+h^- asymmetry.

2. Construct a "Collins"-like dihadron angle $\phi_{2h,S}$ and compare the asymmetry obtained with the "classic" one from ϕ_{RS} :

 ϕ_{2h} is the azimuthal angle of $\mathbf{R}_N = \hat{\mathbf{p}}_{T,h^+} - \hat{\mathbf{p}}_{T,h^-}$ \Rightarrow essentially the arithmetic mean of the azimuthal angles of the two hadrons

see Bradamante's talk at DSPIN13 and [arXiv:1401.6284]

NEW Collins vs. dihadron asymmetries $\blacktriangleright \Delta \Phi$ dependence

- Clear mirror symmetry at larger $\Delta \Phi$ for Collins of h^+ and h^-
- Dihadron asymmetry well compatible with Collins asymmetry of h^+
- Increasing amplitudes with $\Delta \Phi$; except of highest bin
- Compatible with zero for $\Delta \Phi < 1$.

 $\Rightarrow This is expected in the framework of the string fragmentation model and is also consistent with the small dihadron asymmetries measured at low invariant masses.$ Chr. Braun (Univ. Erlangen) COMPASS dihadron asymmetries TRANSVERSITY14 31 / 34

NEW Collins vs. dihadron asymmetries $\blacktriangleright \Delta \Phi$ dependence

- Amplitudes for z > 0.2 sample are enhanced, but still compatible with the standard sample
- Increasing asymmetry amplitudes for the valence region sample
- But the asymmetry remains also in the x < 0.032 sample

NEW dihadron asymmetry $\blacktriangleright \Delta \Phi$ vs. M_{inv}

Is there a correlations between the invariant mass of the hadron pair and the difference of the azimuthal angles of the two hadrons?

 \rightarrow Correlation due to the fact that the difference of the azimuthal angles of the two hadrons is related to the opening angle of the pair and thus to its invariant mass. \Rightarrow Recursive string fragmentation model by Artru: A dependence of the asymmetry on $\Delta \Phi$, since the Artru's generalized Collins effect should be stronger for back-to-back emitted hadrons

 \Rightarrow Dihadron FF is also expected to depend on $M_{h^+h^-}$

Conclusions & Outlook

- Combined 2007/2010 proton h^+h^- results accepted by Nucl.Phys.B [arXiv:1401.7873]
- $\bullet\,$ Preliminary 2003-2004 deuteron and 2007/2010 proton data identified pair
- ① Complete sets of $\pi^+\pi^-$ asymmetries with unified cuts, binning and fit method from deuteron and proton targets
- 2 COMPASS $\pi^+\pi^-$ data is in good agreement with HERMES results and models
- Bin-by-bin extraction with the final COMPASS results of the transversity distribution of u and d valence quarks using the method by Bacchetta et al. [JHEP03 (13) 119]
- **4** Clear Transversity signal at large $\Delta \Phi$

Outlook:

- Paper on all identified asymmetries: deuteron and proton data
- Multidimensional analysis of identified pairs
- Further investigations on dihadron vs. Collins asymmetries ongoing
- "Sivers" like asymmetry in the dihadron sample (cf. talk by Aram Kotzinian)
- Asymmetries of pairs including π^0

Thank you for your attention!

YOUR CONFERENCE PRESENTATION HOW YOU PLANNED IT: INTRODUCE DESCRIBE APPLAUSE OUTLINE YOURSELF ENGAGING OF TALK MOTIVATION RESULTS A&D , 7 1 START 15 MINUTES METHODOLOGY AND CONCLUSIONS EXPERIMENT DESIGN HOW IT GOES: REALIZE YOU ONLY HAVE 3 MINUTES LEFT. ANNOYING PREVIOUS TECHNICAL MEMBER POWER SPEAKER RUNS DIFFICULTIES FORGET THROUGH THE LATE AND EATS CONNECTING YOUR LAPTOP. WITH SELF-AGGRANDIZING REST OF YOUR INTO YOUR TIME YOURSELF. MOTIVA-30 SLIDES. QUESTION. 14 15 1 MINUTES 2 1 1 1 STAR -TION SPEND WAAAY TOO MUCH TIME DESCRIBING AWKWARD SILENCE Q&A. YOUR OUTLINE.

from phdcomics.com

electronic address: christopher.braun@cern.ch

Chr. Braun (Univ. Erlangen) COMPASS dihadron asymmetries TRANSVERSITY14 34 / 34